乾蝕刻機台原理的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

乾蝕刻機台原理的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦楊子明,鍾昌貴,沈志彥,李美儀,吳鴻佑,詹家瑋,吳耀銓寫的 半導體製程設備技術(2版) 可以從中找到所需的評價。

另外網站反應式離子蝕刻機RIE - ishien vacuum 部落格- 痞客邦也說明:反應式離子蝕刻機RIE(Reactive Ion Etching)介紹【蝕刻原理】 在半導體製程中,蝕刻(Etch)被用來將某種材質自晶圓表面上移除。蝕刻通常是利用腐蝕 ...

國立陽明交通大學 工學院工程技術與管理學程 曾仁杰所指導 王瑞宗的 金屬(AlSiCu)濕式蝕刻均勻性改善之研究 (2021),提出乾蝕刻機台原理關鍵因素是什麼,來自於6吋晶圓代工、濕式蝕刻、實驗設計法。

而第二篇論文中國醫藥大學 職業安全與衛生學系碩士班 王義文所指導 許詠怡的 高科技廠濕式蝕刻製程過氧化氫系溶液之不相容性熱分析 (2021),提出因為有 過氧化氫系蝕刻液、微差掃描熱卡計 (DSC)、熱危害特性、自昇溫速率的重點而找出了 乾蝕刻機台原理的解答。

最後網站CH 4 微機電元件之關鍵製程蝕刻與LIGA. - SlidePlayer則補充:蝕刻 製程的功能蝕刻製程的功能,是將微影製程前所沉積的薄膜,把沒被光阻覆蓋的部份以化學反應或物理作用的方式去除掉,已完成轉移光罩圖案到薄膜上面的目的。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了乾蝕刻機台原理,大家也想知道這些:

半導體製程設備技術(2版)

為了解決乾蝕刻機台原理的問題,作者楊子明,鍾昌貴,沈志彥,李美儀,吳鴻佑,詹家瑋,吳耀銓 這樣論述:

  半導體(Semiconductor)是介於導體(Conductor)與絕緣體(Insulator)之間的材料。我們可以輕易的藉由摻質(Dopant)的摻雜(Doping)去提高導電度(Conductivity)。其中二六族及三五族是為化合物半導體(Compound Semiconductor)材料,大部分是應用於光電領域,如發光二極體(Light Emitting Diode, LED)、太陽能電池(Solar cell)等。而目前的積體電路(Integrated Circuit, IC)領域,主要還是以第四族的矽(Si)為主的元素半導體,也就是目前的矽晶圓(Silic

on Wafer)基底材料(Substrate) 。   在未來的日子,我們可預見晶圓廠裡將有可能全面改為自動化的運作,到那時將不再需要大量的操作人員。而主要的人力將會是工程師(含)以上的職務,所以希望能以此書與各位以及想轉職的朋友們提供一個分享,讓大家都能對於常見的機台設備及其製程技術,有一個全觀的認識,以提升職場的競爭力。

金屬(AlSiCu)濕式蝕刻均勻性改善之研究

為了解決乾蝕刻機台原理的問題,作者王瑞宗 這樣論述:

在現今的6吋晶圓製造代工廠,因製造成本太高需不斷做降低成本的活動,來維持競爭力。本研究以L公司的大宗產品金屬氧化半導體場效電晶體(MOSFET:Metal Oxide Semiconductor Field Effect Transistor)作為降低成本的改善對象,利用本人工作相關的經驗,選擇金屬(AlSiCu)蝕刻製程均勻性(U%)做改善研究。因現況使用單一酸槽式批次生產機台做金屬(AlSiCu)濕式蝕刻,其均勻性(U%)不佳需經過2道金屬(AlSiCu)濕式蝕刻且總蝕刻量要百分之一百五十才能將需蝕刻的材料蝕刻乾淨,不僅製造工序多而且生產週期也長,整體成本隨之增加。回顧相關文獻與教科書籍

,蒐集「金屬濕式蝕刻機台研究」、「金屬蝕刻液研究」及「濕式蝕刻製程參數研究」三大類金屬濕式蝕刻相關文獻,得到影響金屬(AlSiCu)濕式蝕刻的因子。另外蒐集「矩陣實驗設計」及「田口式實驗設計」之實驗設計相關文獻,兩者一起運用在本研究以最少的實驗條件成本並可對金屬(AlSiCu)濕式蝕刻均勻性(U%)得到改善。本研究使用單槽式批次生產機台並利用特性要因-魚骨圖列出機台面、製程面、治具面及蝕刻液面總共11項影響因子。本研究先分四組利用矩陣實驗(28次)找出4項控制因子。再利用田口式實驗設計4因子3水準L9(34)找出影響的控制因子及水準。本研究實驗得到金屬(AlSiCu)濕式蝕刻均勻性(U%)最佳

化條件為:手臂(Robot)擺盪頻率60次/分鐘、鐵氟龍晶舟(Teflon cassette)傾斜度20度、酸液幫浦(Chemical pump)循環速率18 公升/分鐘及氮氣氣泡(N2 Bubble)流量15公升/分鐘,均勻性(U%)平均5.9%,確實達到預期的改善均勻性(U%)目標

高科技廠濕式蝕刻製程過氧化氫系溶液之不相容性熱分析

為了解決乾蝕刻機台原理的問題,作者許詠怡 這樣論述:

隨著高科技產業發展日益迅速及蓬勃,因應半導體及光電面板等產業之製造需求,常將危害性化學品應用於製程中進行化學反應,進而促使危害性化學品越來越廣泛且更加複雜,若於使用或以管線運輸危害性化學品之過程中忽略工程防護與安全管理,即可能導致嚴重之事故或意外。 目前高科技廠因過氧化氫分解之產物僅為水及氧氣以及其強氧化性等特性,常被添加於蝕刻液中製成過氧化氫系蝕刻液,如 SPM (Sulfuric acid and hydrogen peroxide mixtures) 及 HPM (Hydrochloric acid and hydrogen peroxide mixtures) 等應用在蝕刻製程中;

然而,當過氧化氫與強酸或金屬離子等不相容性物質接觸便可能立即觸發或產生劇烈放熱反應,進而導致事故發生,因此蝕刻製程於過氧化氫與酸混合程序或不慎與不相容性物質接觸所產生之放熱現象皆可能為其製程風險之來源。本研究將先針對 30、50 及 60 wt% 過氧化氫進行本質熱分析,確認其熱危害特性;接著探討以 30 及 50 wt% 過氧化氫配製而成之過氧化氫系蝕刻液 SPM 及 HPM 之熱危害;再添加約 1 wt% 之不相容性物質(銅粉 (Copper powder, Cu)、氯化銅 (Copper chloride, CuCl3)、硫酸銅 (Copper sulfate, CuSO4)、氯化鐵 (

Ferric chloride, FeCl3)、氧化亞鐵 (Iron oxide, FeO) 及二氧化鈦 (Titanium dioxide, TiO2))於 SPM 及 HPM 溶液中進行不相容性測試,並藉由微差掃描熱卡計 (Differential scanning calorimetry, DSC1) 進行昇溫掃描實驗取得物質之放熱圖譜及製程反應熱危害之相關參數(如放熱起使溫度 (T0)、放熱峰值溫度 (Tp) 及反應分解熱 (ΔHd) 等),篩選危害程度較高之樣品進行動力學之計算及以 C++ 軟體模擬自昇溫速率。