gnss原理的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

gnss原理的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦寫的 GPS/GNSS原理與應用(第3版) 和張睿周峰郭隆慶的 無線通信儀錶與測試應用(第3版)都 可以從中找到所需的評價。

另外網站GNSS原理及技术(一)——GNSS现状与发展_卡小基的博客也說明:GNSS 的概念GNSS的全称是全球导航卫星系统(Global Navigation Satellite System),它是泛指所有的卫星导航系统,包括全球的、区域的和增强的,如美国的GPS、俄罗斯 ...

這兩本書分別來自電子工業 和人民郵電所出版 。

健行科技大學 資訊工程系碩士班 張嘉強、魯大德所指導 鄭佩宇的 低空輔助資料運用於都會區衛星導航定位之研究 (2019),提出gnss原理關鍵因素是什麼,來自於衛星導航定位、GNSS觀測量、虛假距離、地面信標。

而第二篇論文健行科技大學 資訊工程系碩士班 張嘉強所指導 吳宥均的 智慧型手機GNSS相位觀測量之定位分析 (2018),提出因為有 智慧型手機、載波相位、基線觀測、靜態定位、動態定位的重點而找出了 gnss原理的解答。

最後網站GNSS原理与应用-1 - gary_123 - 博客园則補充:GNSS原理 与应用(投稿自用)_哔哩哔哩_bilibili 课程内容1、GPS卫星定位测量基础2、GPS卫星信号及其测量原理3、GPS静态定位原理4、GPS动态定位 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了gnss原理,大家也想知道這些:

GPS/GNSS原理與應用(第3版)

為了解決gnss原理的問題,作者 這樣論述:

本書詳細介紹了GPS、GLONASS、BeiDou、Galileo、QZSS和NavIC系統的**資訊,涵蓋了各個系統的星座配置、衛星、地面控制系統和使用者設備,提供了詳細的衛星信號特徵。   本書包括GNSS簡介、衛星導航基礎、全球衛星導航系統、GLONASS、伽利略系統、北斗衛星導航系統、區域衛星導航系統、GNSS接收機、GNSS擾亂、GNSS誤差、獨立GNSS的性能、差分GNSS和精密單點定位、GNSS與其他感測器的組合及網路輔助、GNSS市場與應用。   本書可作為高校相關專業學生學習GNSS基本知識的教材,也可供業內相關技術人員參考。 Elliott D. Kapl

an,美國麻塞諸塞州貝德福德MITRE公司首席工程師,美國紐約理工學院電氣工程理學學士,美國東北大學電氣工程理學碩士。自1986年以來,Kaplan先生一直積極參與GPS相關的政府計畫。他目前正在支持美國空軍研究實驗室航太飛行局和GPS理事會的活動,其中包括AFRL導航技術衛星3(NTS-3)的開發。 寇豔紅,博士,北京航空航太大學電子資訊工程學院副教授。長期從事衛星導航、通信與信號處理領域的科研和教學工作,擔任CSNC、ION GNSS/ITM、CPGPS、MMT等國際會議分會主席,中國第二代衛星導航系統重大專項專家組專家。已主持完成科研專案30余項,發表論文百餘篇、合著1部、譯著2部、標

準2部,獲授權發明專利十余項,獲省部級科技進步獎6項、校優秀教學成果獎2項。 第1章 引言 1 1.1 簡介 1 1.2 GNSS概述 1 1.3 全球定位系統 2 1.4 全球導航衛星系統 3 1.5 伽利略系統 4 1.6 北斗系統 5 1.7 區域系統 6 1.7.1 准天頂衛星系統 6 1.7.2 印度導航星座(NavIC) 7 1.8 增強系統 7 1.9 市場與應用 8 1.10 本書的結構 9 參考文獻 12 第2章 衛星導航基礎 13 2.1 利用到達時間測量值測距的概念 13 2.1.1 二維定位 13 2.1.2 衛星測距碼定位原理 15 2.2 參考坐

標系 17 2.2.1 地心慣性坐標系 17 2.2.2 地心地固坐標系 17 2.2.3 當地切平面(當地地平)坐標系 19 2.2.4 本體框架坐標系 20 2.2.5 大地(橢球)座標 21 2.2.6 高度座標與大地水準面 22 2.2.7 國際地球參考框架 23 2.3 衛星軌道基礎 24 2.3.1 軌道力學 24 2.3.2 星座設計 28 2.4 GNSS信號 33 2.4.1 射頻載波 33 2.4.2 調製 33 2.4.3 次級碼 36 2.4.4 複用技術 36 2.4.5 信號模型與特性 37 2.5 利用測距碼確定位置 41 2.5.1 確定衛星到用戶的距離 41

2.5.2 用戶位置的計算 43 2.6 求解使用者的速度 45 2.7 頻率源、時間和GNSS 47 2.7.1 頻率源 47 2.7.2 時間和GNSS 53 參考文獻 53 第3章 全球衛星導航系統 55 3.1 概述 55 3.1.1 空間段概述 55 3.1.2 控制段概述 55 3.1.3 用戶段概述 56 3.2 空間段描述 56 3.2.1 GPS衛星星座描述 56 3.2.2 星座設計指南 58 3.2.3 分階段發展的空間段 60 3.3 控制段描述 75 3.3.1 OCS的當前配置 76 3.3.2 OCS的進化 86 3.3.3 OCS未來計畫的升級 88 3.4

用戶段 89 3.4.1 GNSS接收機的特性 89 3.5 GPS大地測量和時標 93 3.5.1 大地測量 93 3.5.2 時間系統 94 3.6 服務 94 3.6.1 SPS性能標準 95 3.6.2 PPS性能標準 97 3.7 GPS信號 99 3.7.1 傳統信號 99 3.7.2 現代化信號 110 3.7.3 民用導航(CNAV)和CNAV-2導航數據 116 3.8 GPS星曆參數和衛星位置計算 120 3.8.1 傳統星曆參數 120 3.8.2 CNAV和CNAV-2星曆參數 121 參考文獻 123 第4章 全球導航衛星系統 126 4.1 簡介 126 4.2

空間段 127 4.2.1 星座 127 4.2.2 衛星 128 4.3 地面段 131 4.3.1 系統控制中心 131 4.3.2 中央同步器 131 4.3.3 遙測、跟蹤和指揮 132 4.3.4 鐳射測距站 132 4.4 GLONASS使用者設備 132 4.5 大地測量學與時間系統 133 4.5.1 大地測量參考坐標系 133 4.5.2 GLONASS時間 134 4.6 導航服務 135 4.7 導航信號 135 4.7.1 FDMA導航信號 135 4.7.2 頻率 136 4.7.3 調製 137 4.7.4 編碼特性 137 4.7.5 GLONASS P碼 138

4.7.6 導航電文 138 4.7.7 C/A碼導航電文 139 4.7.8 P碼導航電文 139 4.7.9 CDMA導航信號 140 致謝 142 參考文獻 142 第5章 伽利略系統 144 5.1 專案概述和目標 144 5.2 伽利略系統的實現 145 5.3 伽利略服務 145 5.3.1 伽利略開放服務 145 5.3.2 公共監管服務 146 5.3.3 商業服務 146 5.3.4 搜索與救援服務 146 5.3.5 生命安全服務 146 5.4 系統概述 146 5.4.1 地面任務段 149 5.4.2 地面控制段 152 5.4.3 空間段 153 5.4.4 運

載火箭 158 5.5 伽利略信號特徵 159 5.5.1 伽利略擴頻碼和序列 161 5.5.2 導航電文結構 162 5.5.3 正向糾錯編碼和塊交織 163 5.6 互通性 164 5.6.1 伽利略大地參考坐標系 164 5.6.2 時間參考坐標系 164 5.7 伽利略搜索和救援任務 165 5.7.1 SAR/Galileo服務描述 165 5.7.2 歐洲SAR/Galileo覆蓋區域和MEOSAR環境 166 5.7.3 SAR/Galileo系統架構 168 5.7.4 SAR頻率計畫 170 5.8 伽利略系統性能 172 5.8.1 授時性能 172 5.8.2 測距性能

173 5.8.3 定位性能 176 5.8.4 最終運營能力的預期性能 177 5.9 系統部署完成FOC的時間 178 5.10 FOC之後系統伽利略的發展 179 參考文獻 179 第6章 北斗衛星導航系統 181 6.1 概述 181 6.1.1 北斗衛星導航系統簡介 181 6.1.2 北斗的發展歷程 182 6.1.3 BDS的特點 185 6.2 BDS的空間段 186 6.2.1 BDS星座 186 6.2.2 BDS衛星 190 6.3 BDS控制段 191 6.3.1 BDS控制段的組成 191 6.3.2 BDS控制段的運行 192 6.4 大地測量參考系和時間參考系

192 6.4.1 BDS坐標系 192 6.4.2 BDS時間系統 193 6.5 BDS服務 193 6.5.1 BDS服務類型 193 6.5.2 BDS RDSS服務 194 6.5.3 BDS RNSS服務 195 6.5.4 BDS SBAS服務 197 6.6 BDS信號 197 6.6.1 RDSS信號 197 6.6.2 BDS區域系統的RNSS信號 198 6.6.3 BDS全球系統的RNSS信號 205 參考文獻 207 第7章 區域衛星導航系統 209 7.1 准天頂衛星系統 209 7.1.1 概述 209 7.1.2 空間段 209 7.1.3 控制段 211

7.1.4 大地測量和時間系統 213 7.1.5 服務 213 7.1.6 信號 214 7.2 印度導航星座 217 7.2.1 概述 217 7.2.2 空間段 218 7.2.3 NavIC控制段 219 7.2.4 大地測量和時間系統 221 7.2.5 導航服務 223 7.2.6 信號 223 7.2.7 應用和NavIC使用者設備 224 參考文獻 225 第8章 GNSS接收機 228 8.1 概述 228 8.1.1 天線單元和電子設備 229 8.1.2 前端 230 8.1.3 數位記憶體(緩衝器和多工器)和數位接收機通道 230 8.1.4 接收機控制和處理、導航控

制和處理 230 8.1.5 參考振盪器和頻率合成器 230 8.1.6 使用者和/或外部介面 231 8.1.7 備用接收機控制介面 231 8.1.8 電源 231 8.1.9 小結 231 8.2 天線 231 8.2.1 所需屬性 232 8.2.2 天線設計 232 8.2.3 軸比 234 8.2.4 電壓駐波比 236 8.2.5 天線雜訊 237 8.2.6 無源天線 238 8.2.7 有源天線 238 8.2.8 智慧天線 238 8.2.9 軍用天線 239 8.3 前端 239 8.3.1 功能描述 240 8.3.2 增益 241 8.3.3 下變頻方案 242 8.

3.4 輸出到ADC 242 8.3.5 ADC、數位增益控制和類比頻率合成器功能 243 8.3.6 ADC實現損耗及設計示例 244 8.3.7 ADC取樣速率與抗混疊 247 8.3.8 ADC欠採樣 249 8.3.9 雜訊係數 251 8.3.10 動態範圍、態勢感知及對雜訊係數的影響 251 8.3.11 與GLONASS FDMA信號的相容性 253 8.4 數位通道 254 8.4.1 快速功能 254 8.4.2 慢速功能 267 8.4.3 搜索功能 271 8.5 捕獲 286 8.5.1 單次試驗檢測器 286 8.5.2 唐檢測器 289 8.5.3 N中取M檢測器

291 8.5.4 組合唐與N中取M檢測器 293 8.5.5 基於FFT的技術 293 8.5.6 GPS軍用信號直捕 295 8.5.7 微調多普勒與峰值碼搜索 301 8.6 載波跟蹤 301 8.6.1 載波環鑒別器 302 8.7 碼跟蹤 306 8.7.1 碼環鑒別器 306 8.7.2 BPSK-R信號 308 8.7.3 BOC信號 310 8.7.4 GPS P(Y)碼無碼/半無碼處理 311 8.8 環路濾波器 311 8.8.1 PLL濾波器設計 313 8.8.2 FLL濾波器設計 314 8.8.3 FLL輔助PLL濾波器設計 314 8.8.4 DLL濾波器設計 3

15 8.8.5 穩定性 315 8.9 測量誤差和跟蹤門限 323 8.9.1 PLL跟蹤環測量誤差 323 8.9.2 PLL熱雜訊 323 8.9.3 由振動引起的振盪器相位雜訊 325 8.9.4 艾倫偏差振盪器相位雜訊 326 8.9.5 動態應力誤差 327 8.9.6 參考振盪器加速度應力誤差 327 8.9.7 總PLL跟蹤環測量誤差與門限 328 8.9.8 FLL跟蹤環測量誤差 330 8.9.9 碼跟蹤環測量誤差 331 8.9.10 BOC碼跟蹤環測量誤差 336 8.10 偽距、?偽距和積分多普勒的形成 337 8.10.1 偽距 338 8.10.2 偽距 347

8.10.3 積分多普勒 348 8.10.4 偽距載波平滑 349 8.11 接收機的初始工作順序 350 8.12 數據解調 352 8.12.1 傳統GPS信號解調 353 8.12.2 其他GNSS信號的資料解調 356 8.12.3 資料誤位元速率比較 357 8.13 特殊的基帶功能 358 8.13.1 信噪功率比估計 358 8.13.2 鎖定檢測器 360 8.13.3 周跳編輯 365 參考文獻 371 第9章 GNSS擾亂 374 9.1 概述 374 9.2 干擾 374 9.2.1 干擾類型與干擾源 374 9.2.2 影響 377 9.2.3 干擾抑制 397 9

.3 電離層閃爍 400 9.3.1 基礎物理 400 9.3.2 幅度衰落與相位擾動 400 9.3.3 對接收機的影響 401 9.3.4 抑制 402 9.4 信號阻塞 402 9.4.1 植被 402 9.4.2 地形 403 9.4.3 人造建築物 406 9.5 多徑 407 9.5.1 多徑特性及模型 408 9.5.2 多徑對接收機性能的影響 410 9.5.3 多徑抑制 416 參考文獻 417 第10章 GNSS誤差 420 10.1 簡介 420 10.2 測量誤差 420 10.2.1 衛星鐘誤差 421 10.2.2 星曆誤差 424 10.2.3 相對論效應 42

7 10.2.4 大氣效應 429 10.2.5 接收機雜訊和解析度 440 10.2.6 多徑與遮蔽效應 440 10.2.7 硬體偏差誤差 441 10.3 偽距誤差預算 444 參考文獻 444 第11章 獨立GNSS的性能 446 11.1 簡介 446 11.2 位置、速度和時間估計的概念 446 11.2.1 GNSS中的衛星幾何分佈和精度因數 446 11.2.2 GNSS星座的DOP特性 450 11.2.3 精度指標 453 11.2.4 加權最小二乘 456 11.2.5 其他狀態變數 456 11.2.6 卡爾曼濾波 457 11.3 GNSS可用性 458 11.3.

1 使用24顆衛星的標稱GPS星座預測GPS可用性 458 11.3.2 衛星故障對GPS可用性的影響 459 11.4 完好性 465 11.4.1 關於危險程度的討論 465 11.4.2 完好性異常的來源 465 11.4.3 完好性改進技術 467 11.5 連續性 475 11.5.1 GPS 475 11.5.2 GLONASS 476 11.5.3 伽利略 476 11.5.4 北斗 476 參考文獻 476 第12章 差分GNSS和精密單點定位 478 12.1 簡介 478 12.2 基於碼的DGNSS 479 12.2.1 局域DGNSS 479 12.2.2 區域DGN

SS 482 12.2.3 廣域DGNSS 482 12.3 基於載波的DGNSS 484 12.3.1 基線的即時精準確定 484 12.3.2 靜態應用 497 12.3.3 機載應用 498 12.3.4 姿態確定 500 12.4 精密單點定位 501 12.4.1 傳統PPP 501 12.4.2 具有模糊度解算的PPP 503 12.5 RTCM SC-104電文格式 506 12.5.1 2.3版 506 12.5.2 3.3版 508 12.6 DGNSS和PPP示例 509 12.6.1 基於碼的DGNSS 509 12.6.2 基於載波 524 12.6.3 PPP 527

參考文獻 528 第13章 GNSS與其他感測器的組合及網路輔助 531 13.1 概述 531 13.2 GNSS/慣性組合 532 13.2.1 GNSS接收機性能問題 532 13.2.2 慣性導航系統綜述 534 13.2.3 卡爾曼濾波器作為系統組合器 539 13.2.4 GNSSI組合方法 542 13.2.5 典型GPS/INS卡爾曼濾波器設計 544 13.2.6 實現卡爾曼濾波器的注意事項 548 13.2.7 可控接收模式天線的組合 548 13.2.8 跟蹤環路的慣性輔助 550 13.3 陸地車輛系統中的感測器組合 555 13.3.1 引言 555 13.3.2

陸地車輛增強感測器 558 13.3.3 陸地車輛感測器組合 571 13.4 A-GNSS:基於網路的捕獲和定位輔助 576 13.4.1 輔助GNSS的歷史 578 13.4.2 應急回應系統要求和指南 579 13.4.3 輔助資料對捕獲時間的影響 584 13.4.4 無線設備中的GNSS接收機集成 588 13.4.5 網路輔助的來源 590 13.5 移動設備中的混合定位 601 13.5.1 引言 601 13.5.2 移動設備增強感測器 602 13.5.3 移動設備感測器組合 607 參考文獻 609 第14章 GNSS市場與應用 613 14.1 GNSS:基於支援技術

的複雜市場 613 14.1.1 簡介 613 14.1.2 市場挑戰的定義 614 14.1.3 GNSS市場的預測 615 14.1.4 市場隨時間的變化 616 14.1.5 市場範圍和細分 617 14.1.6 政策依賴性 617 14.1.7 GNSS市場的特點 617 14.1.8 銷售預測 618 14.1.9 市場局限性、競爭體系和政策 618 14.2 GNSS的民用應用 619 14.2.1 基於位置的服務 619 14.2.2 道路 620 14.2.3 GNSS在測繪、製圖和地理資訊系統中的應用 621 14.2.4 農業 621 14.2.5 海洋 622 14.2.

6 航空 623 14.2.7 無人駕駛飛行器和無人機 624 14.2.8 鐵路 625 14.2.9 授時與同步 625 14.2.10 空間應用 625 14.2.11 GNSS室內挑戰 626 14.3 政府及軍事應用 626 14.3.1 軍事使用者設備:航空、船舶和陸地 626 14.3.2 自主接收機:智慧型武器 627 14.4 結論 628 參考文獻 628 附錄A 最小二乘和加權最小二乘估計 629 參考文獻 629 附錄B 頻率源穩定度測量 630 B.1 引言 630 B.2 頻率標準穩定度 630 B.3 穩定度的測量 631 B.3.1 艾倫方差 631 B.3.

2 哈達瑪方差 631 參考文獻 632 附錄C 自由空間傳播損耗 633 C.1 簡介 633 C.2 自由空間傳播損耗 633 C.3 功率譜密度與功率通量密度的轉換 635 參考文獻 635

低空輔助資料運用於都會區衛星導航定位之研究

為了解決gnss原理的問題,作者鄭佩宇 這樣論述:

在衛星定位屬於艱困環境中的都會區內,建物會遮蔽GNSS衛星訊號,導致無法定位。本研究分別利用遮蔽衛星建立一種虛假距離觀測量(VR),也針對地面信標模擬取得另一種之信標距離(BR),以進行此類低空輔助觀測量之導航定位測試。在將VR與真實接收之虛擬距離(PR)進行組合,並完成標準程序之衛星導航定位(SPP)計算後可知,在引入適當數量之VR後,其平面坐標與真實SPP定位之成果差異可小於0.2 m,但若也兼顧垂直坐標之可用性,則引入之VR需控制在1-2個之內。此外,利用地面信標所模擬之BR觀測量進行交會定位之成果可知, 信標之布設若能愈密集,其提供之定位誤差將會愈小(相關係數0.96);且信標架設愈

高,其平面與垂直向之定位誤差則會愈低(相關係數0.99);另信標使用數量由4具提高至8具時,誤差改善比率可達65-70%;當低空飛行UAV加以運用時,其定位誤差可較地面定位之同等模式表現更佳。

無線通信儀錶與測試應用(第3版)

為了解決gnss原理的問題,作者張睿周峰郭隆慶 這樣論述:

儀錶是無線通訊工程測試的基礎。本書介紹了當前無線通訊測試中常用儀錶(如示波 器、信號發生器、頻譜分析儀、網路分析儀、綜合測試儀等)的基礎理論和使用技巧,並結合目前主流無線通訊技術標準,對這些儀錶在2G/3G、LTE、 LTE-Advanced、WLAN、MIMO OTA、物聯網、衛星導航、無線電監測等系統中的測試應用進行了介紹,同時探討了5G測試的相關技術。本書根據作者在測試工作中的實際經驗編寫,沒有過多 的理論推導,配合圖形和操作實例來介紹儀錶的使用方法和使用技巧,具有很強的實用性。 張睿,就職於中國資訊通信研究院泰爾終端實驗室,國家一級計量考評員;電子學會電磁相容分會委員

;曾主持建立多個行業計量標準,主持起草《CDMA數位移 動通信綜合測試儀校準規範》等十多個國家的行業標準和計量校準規範;出版《移動智慧終端機技術與測試》等專著;作為第一發明人獲得發明專利七項。 周峰,中國資訊通信研究院泰爾實驗室高級工程師,工學博士;發表技術論文五十餘篇,作為第一發明人申請發明專利十餘項;著有《移動通信天線技術與工程應用》。 郭隆慶,現就職於中國資訊通信研究院泰爾實驗室,高級工程師;長期從事移動通信測試和計量工作,曾主持起草多項國家和行業計量標準,負責多個國家和部級科研專案。 第1章 無線通訊系統的測試基礎 1 1.1 無線通訊系統 1 1.1.1 無線

通訊的基本概念 1 1.1.2 信號與通信系統概述 2 1.1.3 無線通訊系統組成與電波傳播 5 1.2 無線通訊中的測量值 8 1.2.1 概述 8 1.2.2 相關量綱單位基礎 9 1.2.3 電壓dB與功率dB的區別 10 1.2.4 功率與電平 11 1.2.5 衰減和增益的計算 12 1.2.6 分貝與百分比之間的相互轉化 13 1.2.7 dB值的計算方法 14 1.2.8 dBμV、dBμVemf與dBm 18 1.2.9 一些參考值 19 1.3 無線通訊系統中的測量參數和相關測試儀錶 22 1.3.1 信噪比 22 1.3.2 雜訊 22 1.3.3 雜訊因數和雜訊係數 2

3 1.3.4 相位雜訊 24 1.3.5 S參數 25 1.3.6 場強 27 1.3.7 天線增益 27 1.3.8 峰值因數 28 1.3.9 通道功率和鄰道功率 29 1.3.10 誤差向量幅度 29 1.3.11 A/D和D/A轉換器的動態範圍 30 1.3.12 dB(FS) 31 1.4 測量不確定度 31 1.4.1 不確定度的概念 32 1.4.2 不確定度與誤差的區別 32 1.4.3 不確定度的來源 33 1.4.4 不確定度參考標準和檔 33 參考文獻 33 第2章 信號發生器 34 2.1 信號和信號發生器 34 2.1.1 基帶信號發生器和任意波發生器 34 2.

1.2 類比訊號發動機和連續波信號 37 2.1.3 向量調製信號發生器 40 2.1.4 信號發生器使用技巧和注意事項 45 2.1.5 典型信號發生器介紹 48 2.2 有關信號發生器的測試實例 51 2.2.1 產生功率精准、穩定的連續波信號 51 2.2.2 產生多路相位相參信號 53 2.2.3 生成衛星導航信號 57 2.2.4 數位信號的誤位元速率測量 61 2.2.5 功率放大器數位預失真測量 63 2.2.6 LTE-A信號產生方案 66 2.2.7 5G信號生成的若干進展 70 參考文獻 74 第3章 頻譜分析儀 76 3.1 頻譜分析儀原理 76 3.1.1 概述 76

3.1.2 快速傅裡葉變換分析儀(FFT分析儀) 77 3.1.3 超外差式分析儀 78 3.1.4 即時頻譜分析儀 85 3.2 頻譜分析儀的典型指標 86 3.2.1 中頻濾波器特性 87 3.2.2 相位雜訊 87 3.2.3 頻譜分析儀的固有雜訊 87 3.2.4 頻譜分析儀的非線性特性 88 3.2.5 1dB壓縮點 89 3.2.6 動態範圍 89 3.2.7 頻譜測量精度 90 3.2.8 電平測量精度 90 3.3 典型頻譜分析儀介紹 90 3.3.1 R&S公司頻譜分析儀 90 3.3.2 是德科技(Keysight,前身為安捷倫)頻譜分析儀 92 3.3.3 安立(Anr

itsu)公司頻譜分析儀 93 3.4 頻譜分析儀使用注意事項及使用技巧 94 3.4.1 選擇合適的分辨力頻寬(RBW) 94 3.4.2 提高測量精度 96 3.4.3 優化低電平測量的靈敏度 97 3.4.4 為失真測量優化動態範圍 100 3.4.5 識別內部失真成分 102 3.4.6 優化瞬態測量的測量速度 103 3.4.7 選擇合適的檢波/顯示模式 104 3.5 使用頻譜分析儀的典型測試實例 106 3.5.1 脈衝信號的測量 106 3.5.2 WCDMA信號的鄰道功率測量 111 3.5.3 雜散發射(傳導)測量 114 3.5.4 使用可擕式頻譜儀進行基站信號的外場測試

123 參考文獻 126 第4章 向量信號分析方法和儀錶 127 4.1 向量分析方法和向量誤差 127 4.1.1 向量信號分析的技術背景 127 4.1.2 向量調製誤差的測量原理 128 4.2 向量信號分析儀及使用 131 4.2.1 向量信號分析儀的結構和使用 131 4.2.2 通過向量信號分析儀判斷調製誤差原因 139 4.2.3 典型向量信號分析儀介紹 147 4.2.4 向量信號分析儀測量大失真信號的缺陷及改進 150 4.2.5 向量信號分析儀的計量 154 4.3 使用向量信號分析儀的測試實例 155 4.3.1 GSM調製信號測試實例 155 4.3.2 定位多模基

站不同制式間干擾問題 158 4.3.3 使用向量信號分析儀測量AM和PM信號參量 160 4.3.4 DTMB數位地面電視信號的解調分析 164 4.3.5 LTE系統的數位調製測量 167 4.3.6 5G信號向量解調測量的進展 169 參考文獻 171 第5章 無線通訊綜合測試儀 174 5.1 綜合測試儀原理 174 5.1.1 引言 174 5.1.2 原理和框圖 174 5.2 綜合測試儀主要指標介紹 177 5.3 綜合測試儀典型儀錶介紹 179 5.4 典型使用案例 182 5.4.1 使用綜測儀進行LTE終端語音測量 182 5.4.2 使用多埠綜測儀在非信令模式下提高產線

測試速度 190 5.4.3 WCDMA手機測試 192 5.4.4 使用綜測儀進行TD-LTE手機測試 196 參考文獻 208 第6章 功率計 209 6.1 概述 209 6.2 功率測量基本概念 209 6.2.1 微波功率的幾個不同運算式 209 6.2.2 微波功率的幾個不同定義 211 6.3 功率計的基本原理 214 6.3.1 熱敏式功率計 214 6.3.2 熱偶式功率計 217 6.3.3 二極體功率計 220 6.4 微波功率計的主要技術指標 224 6.4.1 頻率範圍 224 6.4.2 功率測量範圍 224 6.4.3 參考校準源 224 6.4.4 功率測量線

性度 224 6.4.5 功率感測器的阻抗特性 225 6.5 微波功率測量不確定度分析模型 225 6.5.1 失配誤差 225 6.5.2 功率靈敏度的不穩定性 227 6.5.3 功率指示器的誤差 227 6.6 微波功率計的選擇 228 6.6.1 脈衝調製信號 228 6.6.2 AM/FM信號 229 6.6.3 脈衝調製信號 229 6.6.4 互調測試 230 6.7 功率計典型應用 230 6.7.1 校準信號發生器輸出功率 230 6.7.2 用脈衝功率感測器和功率計進行WiMAX信號測量 231 6.8 典型功率感測器介紹 234 參考文獻 238 第7章 示波器 23

9 7.1 示波器概述 239 7.1.1 示波器與信號測量 239 7.1.2 類比示波器和數位示波器 241 7.2 示波器的基本原理 243 7.2.1 數字示波器的採樣 243 7.2.2 數字示波器的觸發 246 7.2.3 示波器的抖動測量能力 249 7.2.4 數位示波器的波形平滑功能 252 7.2.5 數位示波器的直流測量能力 254 7.2.6 示波器的測量速度 255 7.2.7 數字示波器的FFT和混合域分析 256 7.3 示波器的配套探頭 259 7.3.1 探頭和探頭附件概述 259 7.3.2 探頭使用的注意事項 263 7.4 示波器的指標和典型儀錶 267

7.4.1 示波器的指標 267 7.4.2 示波器典型儀錶介紹 273 7.5 示波器的操作和使用 275 7.5.1 示波器4個基本系統的設置 275 7.5.2 示波器的使用注意事項 280 7.6 測量實例 283 7.6.1 若干簡單測量專案 283 7.6.2 高速信號互連測試系統 284 7.6.3 脈衝信號的瞬態參量測試 291 7.6.4 射頻調製脈衝參數測量 295 7.6.5 基於示波器的向量解調 300 7.6.6 混合域示波器在物聯網研發中的應用 303 參考文獻 308 第8章 向量網路分析儀 310 8.1 概述 310 8.2 微波網路的散射參數 310 8

.2.1 線性散射參數的概念 310 8.2.2 二埠網路的反射特性和傳輸特性 312 8.2.3 非線性散射參數的概念 318 8.3 網路分析儀基礎 323 8.3.1 網路分析儀的基本原理 323 8.3.2 網路分析儀的基本結構 323 8.4 網路分析儀的校準技術 328 8.4.1 網路分析儀測量誤差模型 328 8.4.2 網路分析儀的校準方法 332 8.5 網路分析儀典型應用 342 8.5.1 濾波器的測試 343 8.5.2 放大器的測試 344 8.5.3 無線充電設備的測試 356 8.5.4 器件脈衝參數的測試 362 8.5.5 雜訊係數的測試 366 8.5.6

自我調整天線的測試 373 8.6 網路分析儀使用技巧 377 8.6.1 靈活的掃描方式 377 8.6.2 靈活的測試開放介面 378 8.6.3 時域選通功能 380 8.6.4 測試點數對測試結果的影響 382 8.6.5 雙源激勵的新應用模式 383 8.6.6 接收機電平精度校準 385 8.7 向量網路分析儀典型型號介紹 389 8.7.1 Keysight公司向量網路分析儀典型型號 389 8.7.2 R&S公司向量網路分析儀典型型號 392 8.7.3 Anritsu公司向量網路分析儀典型型號 394 參考文獻 395 第9章 其他測量儀錶介紹 396 9.1 雜訊係數測

量儀錶 396 9.1.1 概述 396 9.1.2 雜訊係數概念 396 9.1.3 雜訊係數測量方法 398 9.1.4 如何提高雜訊係數測量精度 401 9.1.5 雜訊係數頻率擴展測量 409 9.1.6 典型噪音源和雜訊係數測試儀介紹 412 9.2 無線通道類比儀錶 413 9.2.1 無線通道模型概述 413 9.2.2 無線通道傳播特性 414 9.2.3 無線通道模擬器的原理 418 9.2.4 典型應用 419 9.2.5 無線通道模擬器典型儀錶介紹 431 9.3 路測類儀錶 439 9.3.1 路測儀的結構和功能 439 9.3.2 典型的路測儀錶介紹 441 9.4

天饋線測量儀錶 447 9.4.1 典型測試實例 447 9.4.2 典型天饋線測試儀介紹 451 9.5 無源互調測量儀錶 453 9.5.1 無源互調基本概念和原理 453 9.5.2 無源互調測試系統的基本結構 456 9.5.3 無源互調測試應用 459 9.5.4 無源互調測試儀典型儀錶介紹 461 9.6 相位雜訊測量儀錶 464 9.6.1 相位雜訊基本概念 464 9.6.2 相位雜訊測量方法 467 9.6.3 相位雜訊測量典型儀錶介紹 472 參考文獻 475 第10章 無線通訊系統測試中儀錶的典型應用 476 10.1 移動通信系統收發信機測試 476 10.1.1 概

述 476 10.1.2 發射機測試 477 10.1.3 接收機測試 485 10.2 終端(手機)射頻測試 487 10.2.1 終端(手機)射頻測試概述 487 10.2.2 主要射頻測試項目和測試示例 488 10.2.3 終端射頻一致性認證測試平臺 491 10.3 移動終端的空中性能測試 494 10.3.1 空中性能測試(OTA)的概念 494 10.3.2 OTA的測試參數 494 10.3.3 OTA的測試方法和測試系統 494 10.3.4 MIMO OTA測試 496 10.4 GNSS 原理及測試方案 500 10.4.1 GNSS概述 500 10.4.2 導航衛星模

擬器 502 10.4.3 R&S導航接收機測試 503 10.5 無線電信號監測 507 10.5.1 無線電信號監測概述 507 10.5.2 無線電信號監測技術 508 10.5.3 使用可擕式頻譜分析儀進行無線電信號監測的應用實例 512 10.6 車載緊急呼叫(eCall)系統測試 516 參考文獻 519 第11章 測試自動化 520 11.1 自動測試系統的概念與組成 520 11.2 虛擬儀器 521 11.2.1 虛擬儀器的概念 521 11.2.2 虛擬儀器的特點 522 11.3 自動測試系統軟體發展環境 525 11.3.1 LabView 525 11.3.2 La

bWindows/CVI 528 11.3.3 VEE 531 11.3.4 CMWcards 534 11.4 自動測試系統匯流排技術 535 11.4.1 GPIB匯流排技術 535 11.4.2 VXI匯流排技術 538 11.4.3 PXI匯流排技術 541 11.4.4 LXI匯流排技術 545 11.5 應用及程式設計實例 548 11.5.1 實例1—基於模組化儀器的RFID測試系統 548 11.5.2 實例2—使用向量信號發生器產生GSM脈衝調製信號 550 參考文獻 552

智慧型手機GNSS相位觀測量之定位分析

為了解決gnss原理的問題,作者吳宥均 這樣論述:

近年來智慧型手機發展快速,且配載之高階GNSS晶片,已可提供解析度較高之載波相位觀測量。本研究係針對MI8雙頻GNSS智慧型手機接收器進行相關的定位測試,項目包含 :(1)零基線測試、(2)短基線測試、(3)中基線測試等,且使用大地型測量等級PP6、PP3、DL-V3 大地型接收器觀測量進行相關成果之比對,以探討手機接收器定位成果之分析。針對手機接收器之載波相位觀測量進行後處理動態與靜態定位之成果中,零基線測試顯示,在早晚兩個時段之成果可達公分級精度(平面誤差約0.1公分,高程誤差約0.2公分),但中午時段,其誤差會明顯變大至43公分。在短基線測試成果中,靜態定位之平面誤差在3.9~51.5

公分之間,高程誤差則是1.3~15.4公分;相對而言,動態定位之平面誤差(11.6~231.0公分)與高程誤差(16.2~129.9公分)會出現更為不佳之表現。另在5公里以內之中基線測試成果可知,動態定位之平面誤差可高達88.0~141.7公分之間,相較於大地型測量等級接收器則可仍維持在2公分等級定位精度,說明手機接收器與大地型接收器之定位品質差異極大。