git安裝步驟的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

git安裝步驟的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦孫宏明寫的 Flutter/Dart 跨平台App開發實務入門(第二版) 和王煒王振威的 Spinnaker實戰:云原生多云環境的持續部署方案都 可以從中找到所需的評價。

另外網站安裝在Windows 作業系統- 為你自己學Git | 高見龍 - gitbook.tw也說明:最白話、最深入淺出的Git 教學,教您使用Git 指令及圖形介面工具,建立正確的使用觀念,並使用GitHub 與其它人一起共同協作.

這兩本書分別來自碁峰 和電子工業所出版 。

國立政治大學 資訊科學系 廖峻鋒所指導 王韻淇的 以基礎設施即程式碼概念設計自動化邊緣伺服器維運機制 (2021),提出git安裝步驟關鍵因素是什麼,來自於基礎設施即程式碼、Ansible、自動化維運、CWMP。

而第二篇論文建國科技大學 電子工程系暨研究所 許玉芳、沈慧宇所指導 陳博一的 以 Line Bot 設計與自然語言處理技術監控家電設備運作 (2019),提出因為有 Line Bot、NLP、Raspberry Pi、Speech To Text的重點而找出了 git安裝步驟的解答。

最後網站在macOS 上安裝Git 的3 種簡單方法 - 思想境界則補充:這是在Mac 上安裝Git 的最簡單方法。 Tim Harper 為macOS 開發了一個獨立的Git 安裝程序。 請按照以下步驟下載並安裝該軟件包。 啟動您首選 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了git安裝步驟,大家也想知道這些:

Flutter/Dart 跨平台App開發實務入門(第二版)

為了解決git安裝步驟的問題,作者孫宏明 這樣論述:

  本書從Flutter App開發的實務面著手。先用最簡單的範例帶入基本觀念和Dart語言基礎,並藉由操作步驟講解,幫助讀者熟悉Android Studio的使用技巧。接著由淺入深,依序學習各項主題。在講解的過程中,適時搭配Dart語法介紹,同時兼顧Flutter和Dart的學習。      Flutter App程式架構和各平台的原生程式有很大的差異,一開始就會用到物件導向技術和語法,因此需要先建立相關基礎,才能夠了解程式的架構。如果你在自行摸索的過程中,時常因為網路上片段的資訊而踩雷。本書可以幫助你循序漸進,從基礎開始,一步步累積完整的實作能力!    本書特色     *介紹Cen

ter、Container、Row、Column和Stack等App畫面編排技巧,滿足各種設計需求。    *涵蓋文字、按鈕、單複選清單、影像、動畫、對話盒...等各式各樣元件的用法。    *加入Dart語言最新的Null Safety語法。    *用ValueNotifier搭配ValueListenableBuilder重建App畫面上的物件,程式碼更簡潔。    *加入資料庫、Google地圖和定位等技術主題。    *學習使用套件擴充App的功能。 

以基礎設施即程式碼概念設計自動化邊緣伺服器維運機制

為了解決git安裝步驟的問題,作者王韻淇 這樣論述:

隨著軟硬體技術的快速發展下,促使物聯網技術變得更為成熟且相關應用更為廣泛。由於物聯網系統之邊緣伺服器設備數量眾多、部署分散且又位於使用者端,因此服務供應商會需要一個方法能夠遠端集中管理這些設備,而CPE WAN Management Protocol(CWMP)為目前遠端設備管理中最為通行的規範,在此規範中以Customer Premises Equipment(CPE)稱呼所有位於使用者端的網路終端裝置,其提出透過Auto-Configuration Server(ACS)來對CPE執行遠端維運工作。CWMP目前主要以SOAP over HTTP方法實作,CPE需要安裝複雜的SOAP se

rver才能處理CPE的維運動作,SOAP server不但佔用了CPE資源,也讓ACS在執行CPE維運機制前,需先對其進行管理更新。目前ACS的維運流程也較為繁瑣,ACS的建置以及更新皆以手動方式進行,此方式不但耗費時間且容易會執行臨時的變更動作,又沒有文件記錄所有步驟的情況下,就容易產生配置錯誤或配置漂移。DevOps是近年來興起的軟體開發流程,其在維運方面提出了許多相關的自動化技術,本研究將會藉由這些自動化技術改善目前CWMP維運實作的缺點。DevOps目標為讓開發與維運人員更快速、頻繁地建構、測試與部署軟體,其實作的兩大核心概念分別為自動化的引進與團隊間責任分配的改善,Infrastr

ucture as Code (IaC) 為DevOps自動化實作的重要技術,其不但能實現持續整合與部署來提升整體開發流程的效率,還能以基礎設施程式碼記錄著所進行的維運動作,並以Git系統進行版本控制來記錄所有修改歷程,不但能避免配置漂移情況,還能在需要時進行配置代碼的回溯。因此將透過IaC概念藉著Jenkins與Ansible設計出適用CWMP規範的自動化維運機制,來加快ACS的維運速度、減少出廠時CPE的資源佔用以及減少對CPE中的維運代理伺服器之管理。

Spinnaker實戰:云原生多云環境的持續部署方案

為了解決git安裝步驟的問題,作者王煒王振威 這樣論述:

本書聚焦於雲原生和多雲環境的持續部署方案,共分13章,內容涉及聲明式持續部署概述、Spinnaker基礎與實戰、金絲雀發佈與灰度發佈、部署安全、混沌工程及生產化建議等,結構清晰,循序漸進,深入淺出。   在持續部署最佳實踐方面,本書重點介紹了如何實施灰度發佈、自動金絲雀分析和混沌工程,這些高級部署功能是Netflix 公司實現快速而穩定反覆運算的核心技術。關於如何落地Spinnaker,本書站在人和組織架構的視角,為遷移團隊提供了指導性的意見,解決了新技術落地難的問題。 王煒,騰訊雲CODING高級架構師,CNCF大使,KubeCon評審委員會成員,開源雲原生開發境Nocal

host研發負責人,騰訊雲大學講師。多年來始終從事雲原生架構、Docker、Kubernetes、DevOps及微服務領域的研究與實踐,擅長開源項目治理和運營。   王振威,騰訊雲CODING研發總監,開源雲原生開發環境Nocalhost產品負責人。深耕開發者工具領域,實現了CODING代碼託管、CI/CD等產品從0到1的突破,在Linux、Golang、Java、Kubernetes、Docker等技術領域有所見長。   01 聲明式持續部署概述 1 1.1 持續交付與持續部署 2 1.1.1 為什麼要持續交付 2 1.1.2 持續交付的好處 3 1.1.3 保持隨時可交付

4 1.1.4 解決問題:提高發佈頻率 4 1.1.5 自動化持續部署 5 1.2 命令式與聲明式 6 1.2.1 簡單易用的命令式 7 1.2.2 抽象和歸納的聲明式 8 1.3 常見的聲明式系統 9 1.3.1 Kubernetes 9 1.3.2 Terraform 11 1.3.3 Ansible 12 1.4 聲明式與命令式結合:聲明式腳本流水線 13 1.4.1 核心思想 13 1.4.2 代碼即流水線 14 1.4.3 步驟執行 15 1.5 聲明式腳本流水線的意義 16 1.5.1 簡化行為描述 16 1.5.2 降低學習曲線 17 1.5.3 落地持續部署 17 1.5.4

實現自動化 17 1.6 本章小結 18 02 管理雲基礎設施 19 2.1 遷移至雲原生與混合雲的挑戰 20 2.1.1 憑據管理 20 2.1.2 多雲架構 20 2.1.3 跨地域部署 21 2.1.4 自動伸縮 21 2.1.5 不可變的基礎設施和部署製品 22 2.1.6 服務發現 22 2.2 組織雲基礎設施 23 2.2.1 以應用為中心 23 2.2.2 抽象對雲的操作 24 2.2.3 雲模型 26 2.2.4 多雲配置 26 2.3 流量組織形式 27 2.3.1 啟用/不啟用 27 2.3.2 啟用/啟用 27 2.4 持續部署工具對比 27 2.4.1 Tekton

28 2.4.2 Argo CD 31 2.5 本章小結 36 03 Spinnaker 簡介 37 3.1 概念 38 3.2 應用管理 38 3.2.1 應用 39 3.2.2 伺服器組 39 3.2.3 集群 39 3.2.4 負載等化器 41 3.2.5 防火牆 41 3.3 應用程式部署 42 3.3.1 流水線 42 3.3.2 階段 43 3.3.3 任務 43 3.3.4 部署策略 43 3.4 雲提供商 45 3.5 Spinnaker 架構 46 3.5.1 Deck 48 3.5.2 Gate 50 3.5.3 Clouddriver 50 3.5.4 Orca 51

3.5.5 Echo 52 3.5.6 Front50 53 3.5.7 Igor 54 3.5.8 Fiat 54 3.5.9 Rosco 55 3.5.10 Kayenta 56 3.6 本章小結 57 04 安裝Spinnaker 59 4.1 環境要求 59 4.1.1 Kubernetes 59 4.1.2 Kubectl 62 4.1.3 Jenkins 63 4.1.4 Docker Registery 66 4.2 安裝部署 67 4.2.1 Halyard 命令列工具 67 4.2.2 選擇雲提供商 70 4.2.3 選擇運行環境 71 4.2.4 選擇存儲方式 71 4

.2.5 部署 73 4.2.6 升級 78 4.2.7 備份配置 79 4.2.8 常見問題 81 4.3 本章小結 82 05 Spinnaker基本工作流程:流水線 84 5.1 管理流水線 85 5.1.1 創建流水線 85 5.1.2 配置流水線 87 5.1.3 添加自動觸發器 87 5.1.4 添加階段 88 5.1.5 手動運行流水線 89 5.1.6 禁用流水線 91 5.1.7 刪除流水線 91 5.1.8 鎖定流水線 92 5.1.9 重命名流水線 92 5.1.10 通過JSON編輯流水線 93 5.1.11 流水線歷史版本 94 5.2 部署製品 95 5.2.1

在流水線中使用製品 98 5.2.2 自訂觸發器製品 103 5.2.3 Kubernetes Manifest 製品 104 5.2.4 製品類型 108 5.3 啟動參數 108 5.4 階段 109 5.4.1 基礎設施階段 110 5.4.2 集成外部系統階段 112 5.4.3 測試階段 113 5.4.4 流程控制階段 113 5.4.5 自訂階段 114 5.5 觸發器 114 5.5.1 時間型觸發器 115 5.5.2 事件型觸發器 115 5.6 通知 116 5.7 流水線運算式 118 5.7.1 編寫運算式 119 5.7.2 測試運算式 124 5.8 版本控制和審

計 125 5.9 動態流水線示例 126 5.10 本章小結 132 06 深入核心概念 133 6.1 虛擬機器階段 133 6.1.1 Bake 133 6.1.2 Tag Image 135 6.1.3 Find Image From Cluster 135 6.1.4 Find Image From Tags 136 6.1.5 Deploy 137 6.1.6 Disable Cluster 139 6.1.7 Disable Server Group 140 6.1.8 Enable Server Group 141 6.1.9 Resize Server Group 142

6.1.10 Clone Server Group 143 6.1.11 Rollback Cluster 144 6.1.12 Scale Down Cluster 145 6.2 Kubernetes階段 145 6.2.1 Bake (Manifest) 146 6.2.2 Delete (Manifest) 147 6.2.3 Deploy (Manifest) 148 6.2.4 Find Artifacts From Resource (Manifest) 151 6.2.5 Patch (Manifest) 152 6.2.6 Scale (Manifest) 154 6.2.7

Undo Rollout (Manifest) 155 6.3 集成外部系統階段 156 6.3.1 Jenkins 156 6.3.2 運行 Script 腳本 158 6.3.3 Travis階段 160 6.3.4 Concourse階段 162 6.3.5 Wercker階段 163 6.3.6 Webhook階段 165 6.3.7 自訂 Webhook階段 167 6.4 流程控制階段 170 6.4.1 Wait 171 6.4.2 Manual Judgment 171 6.4.3 Check Preconditions 173 6.4.4 Pipeline 174 6.5

其他階段 175 6.6 部署製品類型 176 6.6.1 Docker 鏡像 176 6.6.2 Base64 178 6.6.3 AWS S3 179 6.6.4 Git Repo 181 6.6.5 GitHub 文件 182 6.6.6 GitLab 文件 184 6.6.7 Helm 185 6.6.8 HTTP文件 188 6.6.9 Kubernetes 對象 189 6.6.10 Maven 190 6.7 配置觸發器 192 6.7.1 Git 192 6.7.2 Docker Registry 194 6.7.3 Helm Chart 196 6.7.4 Artifacto

ry 197 6.7.5 Webhook 198 6.7.6 Jenkins 201 6.7.7 Concourse 202 6.7.8 Travis 202 6.7.9 CRON 203 6.7.10 Pipeline 204 6.7.11 Pub/Sub 204 6.8 使用流水線範本 205 6.8.1 安裝 Spin CLI 206 6.8.2 創建流水線範本 209 6.8.3 渲染流水線範本 211 6.8.4 使用範本創建流水線 211 6.8.5 繼承範本或覆蓋 213 6.9 消息通知 213 6.9.1 Email 216 6.9.2 Slack 218 6.9.3 SMS

220 6.9.4 企業微信機器人 221 6.9.5 釘釘機器人 223 6.10 本章小結 226 07 自動金絲雀分析 227 7.1 Spinnaker 自動金絲雀發佈 227 7.2 安裝組件 229 7.2.1 安裝 Prometheus 229 7.2.2 集成 Minio 232 7.2.3 集成 Prometheus 233 7.3 配置金絲雀 233 7.3.1 創建一個金絲雀配置 234 7.3.2 創建和使用選擇器範本 239 7.3.3 創建金絲雀階段 240 7.4 獲取金絲雀報告 248 7.5 工作原理 250 7.6 最佳實踐 251 7.7 本章小結 2

53 08 混沌工程 254 8.1 理論基礎 254 8.1.1 概念定義 254 8.1.2 發展歷程 255 8.2 為什麼需要混沌工程 256 8.2.1 與測試的區別 256 8.2.2 與故障注入的區別 256 8.2.3 核心思想 257 8.3 五大原則 257 8.3.1 建立穩定狀態的假設 257 8.3.2 用多樣的現實世界事件做驗證 258 8.3.3 在生產環境中進行測試 258 8.3.4 快速終止和最小爆炸半徑 259 8.3.5 自動化實驗以持續運行 259 8.4 如何實現混沌工程 259 8.4.1 設計實驗步驟 260 8.4.2 確定成熟度模型 260

8.4.3 確定應用度模型 262 8.4.4 繪製成熟度模型 263 8.5 在 Spinnaker 中實施混沌工程 263 8.5.1 Gremlin 264 8.5.2 Chaos Mesh 265 8.6 本章小結 268 09 使部署更加安全 269 9.1 集群部署 269 9.1.1 部署策略 269 9.1.2 回滾策略 278 9.1.3 時間窗口 283 9.2 流水線執行 285 9.2.1 併發 285 9.2.2 鎖定 286 9.2.3 禁用 287 9.2.4 階段條件判斷 288 9.2.5 人工確認 288 9.3 自動驗證階段 295 9.4 審計和可追

溯 299 9.4.1 消息通知 299 9.4.2 流水線變更歷史 300 9.4.3 事件流記錄 301 9.5 本章小結 302 10 最佳實踐 303 10.1 南北流量自動灰度發佈:Kubernetes + Nginx Ingress 304 10.1.1 環境準備 304 10.1.2 部署 Nginx Ingress 305 10.1.3 初始化環境 308 10.1.4 創建流水線 309 10.1.5 運行流水線 311 10.1.6 原理分析 317 10.1.7 生產建議 319 10.2 東西流量自動灰度發佈:Kubernetes + Service Mesh 319

10.2.1 環境準備 320 10.2.2 安裝 Istio 321 10.2.3 Bookinfo 應用 322 10.2.4 初始化環境 324 10.2.5 創建流水線 326 10.2.6 運行流水線 328 10.2.7 原理分析 332 10.3 本章小結 334 11 生產建議 336 11.1 SSL 336 11.2 認證 341 11.2.1 SAML 342 11.2.2 OAuth 345 11.2.3 LDAP 349 11.2.4 x509 350 11.3 授權 351 11.3.1 YAML 353 11.3.2 SAML 354 11.3.3 LDAP

354 11.3.4 GitHub 355 11.3.5 Service Account 356 11.3.6 流水線許可權 358 11.4 Redis配置優化 359 11.5 橫向擴容 360 11.6 使用MySQL 作為存儲系統 363 11.6.1 Front50 366 11.6.2 Clouddriver 367 11.6.3 Orca 369 11.7 監控 372 11.7.1 Prometheus 373 11.7.2 Grafana 378 11.8 本章小結 382 12 擴展 Spinnaker 383 12.1 配置開發環境 383 12.1.1 Kork 38

3 12.1.2 組件概述 384 12.1.3 環境配置 385 12.2 編寫新階段 386 12.3 本章小結 394 13 遷移到Spinnaker 395 13.1 如何說服團隊 395 13.2 遷移原則 396 13.2.1 最小化變更工作流 396 13.2.2 利用已有設施 397 13.2.3 組織架構不變性 397 13.3 本章小結 399

以 Line Bot 設計與自然語言處理技術監控家電設備運作

為了解決git安裝步驟的問題,作者陳博一 這樣論述:

Line 通訊軟體的聊天機器人(Line Bot)已逐漸普遍應用在一般日常生活,包括詢問旅遊景點、溫度氣候、或餐飲美食等,本篇論文利用Line Bot設計工具並結合自然語言處理(NLP-Natural Language Processing)技術以管理後端機器設備運作。Line Bot 前端技術主要是透過其系統開發套件(SDK-System Development Kit)完成一般APP設計元件的使用者操作界面,這些設計元件包括TextSendMessage、AudioSendMessage、與TemplateSendMessage等,而Line Bot後端技術則利用NLP.js開源套件解析

使用者輸入問句的意圖(intent)與實體關鍵字(named entity)以決定後續管理動作,並將相關管理意圖轉換為對應的控制指令,以執行機器設備的管控動作。NLP.js開源套件可以將使用者輸入的文字訊息轉換為對應的控制意圖,也可以反向轉換控制意圖為多種可能的文字訊息,依據[1]文獻說明,在Chatbot, Ask Ubuntu, 與Web Applications等三項語料(Corpus)辨識基準中,包括NLP.js,Watson (IBM),LUIS (Microsoft),DialogFlow(Google),與Wit.ai(Facebook)等多種NLP軟體套件的評比結果,NLP.j

s具備最低辨識錯誤率[2],這也是本篇論文採用NLP.js作為自然語言辨識基礎的主要原因。本篇論文嘗試將控制指令應用於樹莓派(Raspberry Pi)所設計智慧家庭的家電控制(例如:開燈或關燈),並將家電控制後的場景影像傳回Line Bot,因此使用者透過Line Bot輸入語音指令後,將可以確認機器設備接受控制後的變化,以確保聲控指令執行無誤。關於使用者語音聲波與控制指令文字之間的語音辨識技術中,我們實作Google STT (Speech To Text) API技術,雖然需要Internet網路連線,但Google STT API具備準確的語音辨識能力,另外本篇論文亦有介紹Google

STT API的相關原理與技術,以更深入了解其間細節差異。在工業4.0領域中,人工智慧在許多工業自動化管理的過程具備舉足輕重的角色,相關技術包括影像辨識、語音辨識、與自然語言處理等,其中聲控設備扮演一項不可或缺的重要因素,本篇論文利用Line Bot SDK設計前端操作介面並結合自然語言處理與語音辨識技術以管理後端機器設備運作,同時也探討相關設計與執行的重點細節,以做為後續工廠自動化管理之聲控設備相關技術參考依據。關鍵字:Line Bot、NLP、Raspberry Pi、Speech To Text