IronPython的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

IronPython的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦劉凱寫的 從芯片到雲端:Python物聯網全棧開發實踐 可以從中找到所需的評價。

另外網站推下python/ironpython:從入門到精通 - 程式前沿也說明:最近無聊,下了個visual studio 2005的furture,發現裡面多了對動態語言的支援.其實很早就想擺弄下python,正好是個機會.一開始是想學ironpython, ...

國立中興大學 土木工程學系所 謝孟勳所指導 陳立宇的 曲面結構資訊自動轉入BIM之研究 (2014),提出IronPython關鍵因素是什麼,來自於BIM、Revit、Rhino、資料解析、Grasshopper、停車場爬坡車道、曲牆。

而第二篇論文國立臺北科技大學 工程科技研究所 宋裕祺所指導 許家銓的 地震防災管理系統建置之研究 (2012),提出因為有 地震衰減律、易損性曲線、地震災損評估、物件導向的重點而找出了 IronPython的解答。

最後網站IronPython in Action - Books - Amazon.com則補充:IronPython in Action [Foord, Michael J., Muirhead, Christian] on Amazon.com. *FREE* shipping on qualifying offers. IronPython in Action.

接下來讓我們看這些論文和書籍都說些什麼吧:

除了IronPython,大家也想知道這些:

從芯片到雲端:Python物聯網全棧開發實踐

為了解決IronPython的問題,作者劉凱 這樣論述:

物聯網開發重新定義了「全棧開發」的范圍。Python作為一門快速發展的語言,已經成為系統集成領域的優選語言之一,其可覆蓋從電路邏輯設計到大數據分析的物聯網端到端開發。各領域開發者可以利用Python交叉涉足物聯網設備、邊緣計算、雲計算、數據分析的工程設計。《從芯片到雲端:Python物聯網全棧開發實踐》嘗試讓讀者建立物聯網設計的整體概念,從基礎概念開始,到相關技術選型、開源工程、參考設計與經驗分享。無論是物聯網領域的創業者,還是系統架構師,都可從本書中獲得靈感。本書對於嵌入式開發領域的開發者尤具學習價值,利用Python可加快開發迭代速度、降低開發成本,並可以基於嵌入式Python建立完整的物

聯網軟硬件生態。劉凱,服務於微電子行業二十余載的資深工程師。曾在飛利浦半導體(即NXP恩智浦半導體前身)任資深工程師,從事軟、硬件開發與產品設計等工作,有用匯編/C/C++開發嵌入式系統固件、用Perl/Python腳本做開發支持工具、用PHP/Java/Python做設備雲和Web應用的豐富經驗。現作為獨立系統集成開發商,專業從事物聯網相關項目設計和咨詢服務,主攻嵌入式、RFID、微控制器、物聯網、WSN、Linux、Python、開源等領域。 第1章 物聯網簡介 11.1 物聯網定義 11.2 物聯網發展趨勢 11.3 物聯網應用與技術 21.3.1 物聯網核心價值 2

1.3.2 物聯網發展階段 31.3.3 物聯網分層 51.3.4 物聯網數據傳輸與網絡拓撲 51.3.5 物聯網實施所需技術棧 81.3.6 標准、現狀與未來 101.4 本章小結 16第2章 Python語言基礎 172.1 Python的由來與特征 192.1.1 概述 192.1.2 設計定位與哲學 192.1.3 優點與缺點 202.2 Python與物聯網開發 222.3 獲取Python資源 242.3.1 Python主程序 242.3.2 Python文檔 242.3.3 Python PyPI 242.4 Python解釋器運行環境 262.4.1 REPL交互模式 262

.4.2 直接運行與模塊運行 262.4.3 腳本文件直接運行 272.4.4 源程序文字編碼與結束符 282.5 Python類型與語法 292.5.1 動態類型 292.5.2 傳值與傳引用 302.5.3 數據類型 312.5.4 內置類型 322.5.5 內置類型的普適操作 342.5.6 數值類型 352.5.7 布爾類型 372.5.8 迭代器類型 372.5.9 生成器類型 382.5.10 yield表達式 392.5.11 序列類型 392.5.12 set集合類型 542.5.13 映射類型 552.5.14 其他類型 562.5.15 控制流 592.5.16 內置函數

612.5.17 用戶自定義函數 622.5.18 模塊 652.5.19 輸入/輸出 682.5.20 面向對象編程 742.5.21 進程和線程 822.5.22 錯誤和異常 902.6 Python標准庫概覽 932.7 本章小結 94第3章 Python語言進階 953.1 HOWTO:常見任務和解決方案 953.1.1 數據類型轉換 963.1.2 數據的調試打印 1003.1.3 數據類型資源優化 1023.1.4 數據結構與算法 1023.1.5 數據緩存 1033.1.6 數據多路復用和解復用 1043.1.7 數據序列化和反序列化 1073.1.8 數據壓縮和解壓縮 1193

.1.9 數據加密 1203.1.10 數據傳輸 1213.1.11 數據后處理 1213.1.12 數據持久化 1213.1.13 數據交換 1223.2 HOWTO:函數式編程 1233.2.1 高階函數 1233.2.2 map函數 1243.2.3 reduce函數 1243.2.4 filter函數 1243.2.5 sorted函數 1253.2.6 返回函數 1253.2.7 閉包 1263.2.8 匿名函數 1263.2.9 裝飾器 1273.3 HOWTO:並發運行模型 1313.3.1 協程 1313.3.2 I/O模型 1343.4 HOWTO:日期與時間 1363.4.

1 類型轉換 1363.4.2 時區的處理 1383.5 Python版本遷移 1393.5.1 Python 2與Python 3的區別 1403.5.2 Python 2到Python 3的流程 1403.5.3 多個Python版本共存 1403.5.4 virtualenv 1413.5.5 Windows多個版本共存 1413.5.6 Linux多個版本共存 1423.6 其他常見技巧 1433.6.1 常數類型的模擬 1433.6.2 枚舉類型的模擬 1433.6.3 開發自定義模塊 1443.7 Python與其他語言 1453.8 Python語言擴展 1513.8.1 C語言

擴展Python 1513.8.2 ctypes訪問Windows DLL 1533.8.3 Jython訪問Java類 1543.8.4 IronPython訪問.NET 1553.9 Python加速 1573.9.1 PyPy 1583.9.2 Cython 1593.9.3 PyCUDA 1593.9.4 PyOpenCL 1593.9.5 Theano 1593.9.6 Nuitka 1593.10 本章小結 160第4章 嵌入式系統開發 1614.1 嵌入式系統硬件分類 1624.1.1 MCU 1624.1.2 MPU 1634.1.3 DSP 1634.1.4 SMP 1644

.1.5 異構大小核 1644.1.6 FPGA原型 1654.1.7 SoPC 1654.1.8 GPU 1674.1.9 哈佛結構和馮•諾依曼結構 1684.2 電路原型設計 1684.2.1 集成電路設計流程 1704.2.2 模擬電路原型設計 1704.2.3 數字電路原型設計 1754.3 常見嵌入式微控制器(MCU) 1794.3.1 MCU市場狀況 1794.3.2 Arduino/Wiring 1804.3.3 ARM mbed 1814.3.4 設計專屬架構和專屬MCU 1824.3.5 ARM MCU差異化競爭 1824.4 常見嵌入式處理器和主板 1844.4.1 ARM

架構 1854.4.2 其余的ARM Linux主板 1884.4.3 MIPS開發板 1904.4.4 x86 mini-ITX 1914.5 常見傳感器和執行器 1924.5.1 虛擬傳感器 1934.5.2 智能傳感器 1934.5.3 專用傳感器 1944.5.4 執行器 1954.6 物聯網通信集成電路 1964.7 嵌入式系統開發語言演進 1974.7.1 從匯編到嵌入式C 1974.7.2 從C到C++ 1994.7.3 壓縮C++的系統消耗 1994.7.4 C++適合物聯網開發 2004.8 C/C++的編程模式和技巧 2044.8.1 C/C++設計模式 2054.8.2

回調函數 2064.8.3 有限狀態機模型 2094.8.4 善用結構體 2114.8.5 C/C++協程 2144.9 開發生態選擇 2154.9.1 工業標准與廠家私有指令集架構 2154.9.2 硬件與軟件平台選擇 2154.9.3 編譯器選擇 2164.10 常見操作系統 2174.10.1 無操作系統 2174.10.2 RTOS的優勢 2184.10.3 uC/OS 2194.10.4 Keil RTX 2194.10.5 mbed RTOS與mbed OS 2204.10.6 FreeRTOS 2214.10.7 Linux是開發復雜聯網設備的現實選擇 2224.11 物聯網中間

件 2274.11.1 WSN堆棧 2274.11.2 TCP/IP 2274.11.3 USB 2274.11.4 FAT/FS 2284.11.5 GUI 2284.11.6 Terminal 2284.11.7 MQTT 2284.11.8 CoAP 2294.12 物聯網安全性 2304.12.1 安全相關芯片 2304.12.2 安全中間件 2314.12.3 Python安全算法 2324.13 設備固件更新 2324.13.1 固件更新技術發展史 2324.13.2 本地固件更新 2344.13.3 遠程固件更新 2344.13.4 固件升級定制 2344.14 各類串口實現聯網

2354.14.1 串口協議的選擇 2354.14.2 模擬串口設備 2364.14.3 其他類型虛擬設備 2384.14.4 ISP編程器 2384.14.5 串口設備監控器 2394.15 本章小結 239第5章 設備連接和編程接口 2405.1 設備連接概述 2405.1.1 嵌入式系統連接層次 2405.1.2 選擇正確的連接方案 2415.1.3 具體落實連接設計 2415.1.4 本章內容安排 2425.2 連接能力匯總 2425.2.1 連接由芯片開始 2435.2.2 芯片內部系統總線 2455.2.3 芯片間連接技術 2465.2.4 設備間連接 2495.2.5 設備組網

2505.2.6 設備組網與聯網的無線技術 2535.2.7 連接性回顧 2665.3 Linux文件系統 2665.3.1 設備即文件 2665.3.2 設備文件系統 2675.3.3 Linux設備文件的演變 2685.3.4 文件I/O操作 2715.3.5 Linux硬件編程 2725.4 並行接口 2735.4.1 老舊的PC並行接口 2745.4.2 高速總線 2745.4.3 GPIO 2745.4.4 Linux訪問GPIO 2755.4.5 GPIO的Python包 2765.5 串行接口 2775.5.1 異步通信串行口 2775.5.2 I2C總線 2845.5.3 S

PI總線 2905.5.4 與其他硬件平台相關的Python包 2945.6 USB總線 2965.6.1 USB Endpoints 2975.6.2 USB Device/Host/OTG 2975.6.3 USB 3.0 2975.6.4 libUSB 2975.6.5 PyUSB 2985.6.6 標准化USB橋接 2995.6.7 與USB相關的其他設計 3015.7 Linux網絡設備驅動 3015.7.1 TCP/IP套接字編程 3015.7.2 IEEE 802.3到IEEE 802.11 3025.7.3 網絡通信實現方案 3025.7.4 私有通信協議棧 3055.7.5

短距離無線連接 3075.8 工業總線 3105.8.1 CAN總線 3105.8.2 LIN總線 3125.8.3 其他ASIC 3135.8.4 定制Python擴展 3135.8.5 Windows DLL 3145.9 本章小結 314第6章 嵌入式Python虛擬機 3156.1 嵌入式高級語言平台大薈萃 3156.1.1 高級語言與二次開發 3156.1.2 BASIC 3196.1.3 Java 3196.1.4 Lua 3226.1.5 JavaScript 3226.1.6 .NET 3236.2 前一代Python虛擬機 3236.2.1 Telit GPRS模塊 3236

.2.2 Symbian 3256.2.3 Windows CE 3256.2.4 OpenMoko 3256.3 深嵌入式Python平台 3266.3.1 LEGO EV3 3266.3.2 TinyPy 3266.3.3 嵌入式Python的局限 3276.4 PyMite 3286.4.1 硬件平台 3286.4.2 維護者 3296.4.3 pymbed分支 3296.4.4 開發現狀 3316.4.5 文檔 3326.4.6 源碼樹 3336.4.7 使用流程 3356.4.8 實踐 3366.4.9 工程小結 3376.4.10 網絡資源 3386.5 VIPER/Zerynth

3386.5.1 硬件平台 3396.5.2 Zerynth Studio 3406.5.3 與標准Python的區別 3416.5.4 快速啟動 3426.5.5 坎坷的使用過程 3426.5.6 Zerynth目錄結構 3436.5.7 硬件相關庫 3446.5.8 其他特性 3556.6 MicroPython 3566.6.1 工程背景知識 3566.6.2 在線評估網頁 3586.6.3 官方硬件平台分支 3586.6.4 衍生項目 3596.6.5 UNIX版本 3606.6.6 MicroPython庫 3636.6.7 STM32HAL分支 3656.6.8 NUCLEO-F

401RE適配 3676.6.9 pyboard評估 3726.6.10 異步處理和中斷處理 3896.6.11 中斷處理的普遍問題 3926.6.12 使用心得 3956.6.13 商品化與知識產權 3966.6.14 BBC microbit 3966.7 Linux與Python 3986.7.1 Linux中Python的運行環境 3986.7.2 交叉編譯CPython 4016.7.3 交叉編譯MicroPython 4026.7.4 Jython運行環境 4046.7.5 Android SL4A 4066.8 本章小結 407第7章 Python應用APP 4087.1 基於字

符的人機界面 4097.1.1 命令行參數 4097.1.2 字符終端開發 4107.1.3 ncurses 4117.2 桌面GUI開發 4127.2.1 Tkinter 4137.2.2 wxPython 4147.2.3 Boa Constructor 4157.2.4 wxGlade 4167.2.5 PyGTK 4177.2.6 PyQt 4197.2.7 PySide 4207.2.8 Enthought 4217.2.9 Cocoa+PyObjC 4237.2.10 Java AWT 4247.2.11 IronPython與WPF 4257.2.12 其他UI 4257.3 本

地Web GUI 4267.3.1 與WebKit相關的Python包 4277.3.2 OneRing 4277.3.3 Pyjs 4277.3.4 Python Flexx 4287.4 本地可執行文件 4297.4.1 Linux可執行文件 4297.4.2 Mac OS X應用程序包 4307.4.3 Windows可執行文件 4307.4.4 pyinstaller 4307.4.5 py2exe 4307.4.6 py2app 4307.4.7 cx_Freeze 4317.4.8 Windows系統服務 4317.4.9 Windows定時任務 4327.4.10 Linux系統

服務 4337.4.11 Linux定時任務 4357.5 移動APP開發 4367.5.1 響應式網頁 4377.5.2 PhoneGAP應用開發 4377.5.3 SL4A 4377.5.4 QPython開發 4417.5.5 Kivy 4437.5.6 其他開發方式 4497.6 本章小結 449第8章 Python開發輔助支持 4518.1 物聯網開發需要不斷優化 4528.2 專屬小工具 4528.2.1 單位轉化器 4538.2.2 內碼轉換器 4548.2.3 其他編碼轉換 4558.3 原型驗證 4588.4 代碼生成器 4598.5 軟件測試 4618.5.1 unitte

st單元測試 4628.5.2 socket壓力測試 4628.5.3 urllib2遠程記錄 4638.5.4 PCBA測試 4668.6 文檔生成器 4688.6.1 文檔格式 4698.6.2 文檔生成工具 4738.7 文檔操縱 4778.7.1 Doc文檔操縱 4778.7.2 Excel表格操縱 4788.8 國際化與本地化 4798.8.1 gettext 4798.8.2 Web多語種切換 4828.8.3 字庫文件生成器 4828.8.4 GB2312點陣字庫提取 4828.8.5 TTF字庫提取 4838.9 配置管理 4848.9.1 軟件配置管理 4848.9.2 軟件

配置管理自動化 4858.9.3 Git Bash 4858.9.4 Dulwich/Gittle包 4858.9.5 Python Subversion包 4868.9.6 watchdog系統監控 4868.10 數據與素材處理 4868.10.1 二維碼顯示 4868.10.2 多媒體相關軟件包 4908.10.3 地理位置 4948.11 通信報文分析 4958.11.1 PyShark 4958.11.2 pypcapfile 4978.11.3 scapy和scapy3k 4978.11.4 pcap Web分析 4978.12 與Arduino/mbed相關的Python包 49

78.12.1 Arduino Prototyping 4988.12.2 pyFirmata 5018.12.3 Py2B 5018.12.4 CmdMessager 5018.12.5 mbed 5048.12.6 mbed RPC 5048.12.7 mbed-ls 5058.12.8 Python-mbedtls 5078.12.9 Python-xbee 5088.13 虛擬儀器 5098.13.1 實時顯示波形 5108.13.2 Instrumentino 5108.13.3 Vipy 5118.13.4 PyVISA 5118.13.5 Pythics 5128.14 3D/V

R/AR 5128.14.1 PyOpenGL 5138.14.2 PySoy 5148.14.3 VPython 5148.14.4 Printrun 3D打印 5148.15 本章小結 515第9章 物聯網服務器端設計 5169.1 物聯網計算模型 5179.1.1 雲計算 5179.1.2 Web PaaS與IoT PaaS 5189.1.3 IoT PaaS供應商 5189.1.4 PaaS/IaaS混合架構 5249.1.5 霧計算 5259.2 物聯網與互聯網設計異同 5269.2.1 基礎架構 5269.2.2 標准化程度 5279.2.3 業務模式 5279.2.4 系統構成

5279.2.5 設備接入協議 5289.2.6 數據特性 5299.2.7 系統架構 5309.2.8 數據持久層 5329.2.9 大數據分析架構 5349.2.10 業務耦合與分離 5349.2.11 業務與數據融合 5359.2.12 認證授權與計費 5359.3 物聯網網關與邊緣服務器 5359.3.1 Python socket服務器 5369.3.2 pyserial RFC2217 5369.3.3 SubGHz網關panStamp 5379.3.4 Rascal micro 5389.3.5 Java IoT網關 5399.4 物聯網設備接入協議 5409.4.1 異步通信框

架Twisted 5419.4.2 Twisted 套接字服務器設計 5449.4.3 物聯網專用協議 5589.4.4 CoAP 5609.4.5 MQTT 5649.4.6 mosquitto/paho 5679.4.7 REST API 5729.4.8 服務器數據推送技術 5729.5 高可用性與高並發性 5759.5.1 並行與並發計算 5759.5.2 網絡I/O模型分類 5759.5.3 架構優化的路徑 5769.5.4 關系數據庫系統 5769.5.5 SQL/NoSQL/NewSQL 5789.5.6 Redis 5799.5.7 MongoDB 5809.5.8 時序數據庫

5819.5.9 消息隊列 5839.6 業務與數據融合 5859.6.1 網站權限管理 5859.6.2 認證授權與計費 5869.6.3 OpenID 5879.6.4 OAUTH 5879.6.5 OpenID與OAUTH的異同 5889.6.6 社交化硬件 5889.7 Web開發框架 5899.7.1 MVC模型 5899.7.2 Web開發流程 5899.7.3 Python Web百花齊放 5909.7.4 Zope 5919.7.5 Django 5919.7.6 Flask 5929.7.7 gevent提升性能 5939.7.8 異步Web框架Tornado 5939.7

.9 異步網絡框架Twisted 5939.7.10 異步Web框架Cyclone 5949.7.11 靜態網頁 5949.7.12 TLS安全網頁 5949.8 物聯網安全 5979.8.1 物聯網安全現狀堪憂 5989.8.2 操作系統安全 5989.8.3 數據緩存與數據持久層安全 5999.8.4 Web框架與容器安全 5999.8.5 遠程加載風險 6009.8.6 Web前端安全 6009.8.7 傳輸層安全 6019.9 服務器交付 6039.9.1 虛擬機交付 6039.9.2 Docker容器交付 6039.9.3 VirtualEnv交付 6059.10 服務器運維 605

9.10.1 Linux定時任務 6069.10.2 常見的定時任務 6109.10.3 系統監控 6119.10.4 集成化運維軟件 6139.11 物聯網系統設計實踐 6149.11.1 服務器端需求分析 6149.11.2 確定設備接入方式 6169.11.3 物聯網的實時要求 6179.11.4 EPIC IoT設備服務器 6179.11.5 EPIC架構優化 6199.12 本章小結 625第10章 融合應用與數據分析 62610.1 物聯網是可編程的 62610.1.1 Web API的「滿漢全席」 62710.1.2 Web API技術演進 62810.1.3 IoT Web A

PI的必要性 62810.1.4 Device as a Service 62910.2 數據統計、分析和挖掘 63010.2.1 名詞解釋 63010.2.2 術語小結 63110.2.3 大數據分析 63210.3 采集整理自有數據 63310.3.1 原始設備數據 63310.3.2 數據埋點 63310.3.3 服務器端數據 63410.3.4 需求確定分析方法 63710.4 采集第三方數據 63710.4.1 結構化數據 63810.4.2 半結構化數據 63810.4.3 非結構化數據 63910.4.4 數據錄入 64410.4.5 數據融合 64410.4.6 數據規整 64

610.4.7 數據交易 64610.5 數據分析 64710.5.1 常見編程語言 64710.5.2 數據分析分類 64710.5.3 科學計算數據分析工具 65110.5.4 統計學數據分析工具 65810.5.5 金融數據分析工具 65910.5.6 大數據平台與生態 66110.6 數據可視化 66310.6.1 數據可視化的發展趨勢 66410.6.2 matplotlib 66510.6.3 seaborn 66510.6.4 mpld3 66610.6.5 Chaco 66710.6.6 Pygal 66810.6.7 Plotly 67010.6.8 TVTK 67110.6

.9 VPython 67210.6.10 Folium 67310.6.11 NetworkX 67410.6.12 Bokeh 67610.6.13 Mayavi 67810.6.14 Vispy 68010.6.15 MoviePy 68110.6.16 其他新技術 68210.7 本章小結 682推薦書目與結束語 683

IronPython進入發燒排行的影片

曲面結構資訊自動轉入BIM之研究

為了解決IronPython的問題,作者陳立宇 這樣論述:

隨著科技的進步,土木業界由原本2D設計圖逐漸發展3D模型且附有資訊在內的建築資訊模型(BIM)。目前工程合約執行架構中,主要由建築師完成設計後,交由承建營造廠清圖。大多數建築師偏好Sketchup 3D建模軟體,但面臨處理自由曲面功能相對較弱,現行建築師常需設計含有複雜曲面的結構,面對著有複雜曲面的建築物時,建築師多用繪製特殊異形結構較佳的繪圖軟體Rhinoceros (簡稱Rhino),再透過Rhino中參數化外掛(Grasshopper)來控制形體,得到建築師所要的空間形態,同時,通過Rhinoceros Scripts來快速生成表皮,且繪製2D平面圖(Autocad)。接著轉由營造廠負

責繪製建築資訊模型(Revit),資訊的轉換造成圖形轉換誤差及效率上的繁瑣。本研究採用Revit 為平台,建構一套由點座標為建構基礎自動曲面量體產生器Point2Mass (簡稱P2M)。P2M使用Python程式所撰寫,所讀取的資訊分為兩項:(一)以建築停車場爬坡車道模組為例,由建築師已設計完成的建築車道平面圖得知車道資訊,輸入至P2M進行計算出所需的車道上座標點而自動組成量體,並且考慮車道在彎道中的超高。(二)將建築師由Rhino所繪製模型3D Model檔,讀取後進行資料解析,再由Revit上將解析出的點座標資訊產出,並建置成為量體。P2M降低資訊的轉換將造成圖形轉換誤差及效率上的問題,

提升繪製困難曲面的效率,並回饋產出至Revit 3D Model。

地震防災管理系統建置之研究

為了解決IronPython的問題,作者許家銓 這樣論述:

台灣位處歐亞大陸版塊和菲律賓海版塊的交界,屬環太平洋地震帶,每年都會因版塊間的相互擠壓而造成地震,屬地震頻繁地帶,為數眾多的既有交通設施及建築物將不可避免的會遭受到強烈地震侵襲的威脅。2011年3月11日,在日本東北地方發生規模9強震,除了地震本身之外,也引發大海嘯,造成生命財產嚴重的損失。當強震造成災害的畫面傳送到全世界,讓世人震驚的除了災難的無情之外,更見識到日本災難預警系統的效率,與民眾避難的秩序。綜觀近數十年來的國內外地震災害,構造物受害之實例甚多,在這些地震災害經驗中,均顯示地震災害對社會所造成的衝擊與經濟損失,是相當嚴重而深遠。因此,若能有效建構一套地震災損評估系統,於地震發生前

提供地震災害災損之境況模擬,據此擬定相關地震災害防救事項,有效執行災害預防、災害搶救、事故處理、災情勘察以及善後處置、復建等相關事宜,並於地震發生時,推估建築物倒塌及人員死傷等災害資訊,可於初期迅速採取緊急應變作為,減少地震災害損失。本研究將參考國內外較知名之震災評估系統,如TELES(台灣)、REDARS(美國)、地震被害想定支援ツール及簡易型地震被害想定システム(日本)建立一套地震防災管理系統。在地表加速度(Peak Ground Accerlation, PGA)推估方面,本研究參考美國REDARS,以台灣自1990年到2003年間地震規模超過5.0之地震測站記錄為基礎,針對台灣各強地動

測站進行地表加速度衰減率之迴歸分析,並將台灣國土網格化,由各網格之鄰近測站推估網格之PGA值;以各網格內之公私有建築物及人口資料為基礎,參考並修正TELES之災損評估模式,計算出特定地震作用下各網格之建築物倒塌數及人口傷亡數等資訊。橋梁損壞推估部分由全台省道橋梁之迴歸分析結果訂定橋梁易損性曲線,計算震後橋梁之功能喪失率。本研究亦將導入脆弱度之概念,假設橋梁受損喪失功能時對周圍環境造成之影響,此分析成果可供政府作為橋梁補強優先順序之挑選。本研究所開發之系統亦包含豐富的建物資料庫,包括:網格設籍人口、網格各類公私有建築物數量、重要設施(包括醫療、警消、電廠、加油站等)資訊等。在系統架構設計與實作方

面,考量計算效能、擴充彈性、容易使用的操作介面與豐富的資料產出,本研究將使用物件導向技術進行系統開發。整個系統以推估專案為中心,包括:推估專案、資料模型、計算核心、可擴充模組介面及視圖顯示等元件,控管整個系統運作。系統實作將以Windows為作業平台,使用.NET Framework做為基礎應用程式的架構,資料庫將使用MySQL為基礎,GIS地圖元件使用MapWinGIS元件,而可擴充模組介面中的腳本語言將使用IronPython。分析成果將以視覺化輔以文字呈現,將包含各網格建築物之倒塌數、各網格人員傷亡數、橋梁功能喪失數、各重要設施震後現況預估等資訊,此成果可供政府做為災前演練及災後初期迅速

採取緊急應變作為之用。本研究結合目前國內外之災損評估模式,由網格化之資訊推估震後災損情形,並藉由簡易明瞭之操作介面與容易擴充的架構,使後續擴充較具彈性及便利性。未來若將各地方政府提供更詳盡之資料整合入本系統,則可做為各地方政府擬定相關地震災害防救事項之用。