ti6al4v硬度的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

明新科技大學 機械工程系精密機電工程碩士在職專班 所指導 彭冠庭的 電子束掃描技術應用於模具表面拋光與改質 (2021),提出ti6al4v硬度關鍵因素是什麼,來自於電子束、拋光、表面改質。

而第二篇論文國立中央大學 材料科學與工程研究所 鄭憲清所指導 宋欣懋的 鎂鋅鈣金屬玻璃及其複材應用於生醫植入物之研究 (2021),提出因為有 金屬玻璃、複合材料、核殼結構、生物降解、表面粗糙度、薄膜的重點而找出了 ti6al4v硬度的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了ti6al4v硬度,大家也想知道這些:

電子束掃描技術應用於模具表面拋光與改質

為了解決ti6al4v硬度的問題,作者彭冠庭 這樣論述:

  本論文的主要目的為研究連續式電子束製程在模具鋼材NAK80上進行表面拋光的成效,觀察材料表面算術平均粗糙度(Ra)的改變,同時透過觀察微結構與量測維式硬度(HV)來確定此加工方法對材料本身機械性質的影響。  在本研究中,多組參數配置的結果,最佳結果可以將Ra=1.590 μm的表面改善至Ra=0.553 μm,下降了65 %,拋光後改質層的機械性質也有所提升,從基材的420HV提升至最高477HV,說明了連續式電子束製程可以對粗糙的表面進行拋光、修復,且表層硬度可以有所提升。於熱影響區域附近硬度略微降低後恢復基材本身硬度,可以發現熱影響區至基材的邊界區域附近有約略100~200 μm的範

圍硬度略微下降低於基材,說明了此區域形成了軟化區。而在電子束移動速度最慢的條件下發現,從改質層至熱影響區附近的硬度皆低於基材本身硬度420 HV,最低下降至357 HV後逐漸恢復於基材硬度,說明了較慢的移動速度下,使電子束衝擊材料表面時能量停留材料上時間較長,除了改質層更深外,間接使材料軟化而導致改質層硬度下降。

鎂鋅鈣金屬玻璃及其複材應用於生醫植入物之研究

為了解決ti6al4v硬度的問題,作者宋欣懋 這樣論述:

鎂基金屬玻璃因其優異的機械性質、安全的生物相容性及具可降解性,其應用於生醫植入物已受到科學家及臨床上的關注,但其本質上的脆性限制其實際應用。本研究選擇較佳玻璃成形能力的Mg66Zn29Ca5為基礎材料,以外添加金屬顆粒的方式來提升鎂基金屬玻璃的破裂韌性,本研究選擇添加3種具有生物相容性的微米級金屬顆粒,分別為鈦鋯基金屬玻璃顆粒、鐵金屬顆粒及多孔鉬金屬顆粒,其添加量以5到30 Vol.%為實驗參數,其中以多孔鉬顆粒表現最為顯著,在20 Vol.%的多孔鉬添加下,3mm柱狀試片其破裂韌性從基材的1.1 MPa‧m1/2提升到6.01 MPa‧m1/2及機械強度仍維持在672MPa,然而在4 mm

的棒狀試片中,明顯的結晶物析出於鎂基金屬玻璃及其複材中,限制了生醫植入物的應用,因此我們設計出以鎂棒為核、金屬玻璃為殼的核殼結構企圖突破金屬玻璃其尺寸上的限制,實驗結果亦顯示核殼結構有效提升外圍金屬玻璃其玻璃形成能力及維持適當的機械強度,在6週相關生醫試驗過後,證明其有效調控降解速率及維持在人體的機械性質,且仍維持良好的生物相容性及幫助骨細胞成長。 對於生醫植入物而言,細胞附著能力是被受關注的議題,表面粗糙度對骨細胞的初始附著及成長有極大的影響,本研究利用3種不同號的砂紙#240、#800、#2000來探討金屬玻璃表面粗糙度對降解能力、MG63骨細胞附著能力及成長能力,研究結果顯示表面粗糙

度對鎂基金屬玻璃降解能力沒有顯著的影響,而較粗糙的表面具有較佳的鈣離子堆積能力,在#800號砂紙處理過後的表面具有較佳的MG63細胞附著性及提供較佳的遷移環境 過快的降解性質是鎂合金應用於生醫植入物的重大問題,本研究利用鎂基金屬玻璃鍍於ZK60鎂合金上,以此改善其機械性質及調控其降解能力。鎂基金屬玻璃薄膜成功藉由真空濺鍍法製備於ZK60鎂合金基板上,鎂基金屬薄膜與ZK60基板間具有良好的附著性並有效提升機械性及抗腐蝕能力,在機械性質方面,表面硬度提升至204Hv及抗彎曲能力從216MPa提升至254MPa,在抗腐蝕能力方面,其腐蝕電流從2.88 × 10-5 A/cm2降至1.66 × 1

0-6 A/cm2。