router天線方向的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

淡江大學 航空太空工程學系碩士班 洪健君所指導 林尚德的 複合材料包埋微帶天線之智慧結構研製 (2021),提出router天線方向關鍵因素是什麼,來自於複合材料、蜂巢結構、微帶天線、智慧結構。

而第二篇論文國立高雄科技大學 電子工程系 蘇德仁所指導 洪忠緯的 提升無線網路於室內功率之研究 (2021),提出因為有 無線網路、電磁波、全向性天線、金屬反射、功率的重點而找出了 router天線方向的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了router天線方向,大家也想知道這些:

複合材料包埋微帶天線之智慧結構研製

為了解決router天線方向的問題,作者林尚德 這樣論述:

本研究藉由微帶天線之特性利用複合材料(Composite Material)和蜂巢結構(Honeycomb Structure)對微帶天線(Microstrip Antenna)進行包埋形成智慧結構,作為航空器無線傳輸的平台,並分析微帶天線在被複合材料包埋後之電磁影響。本研究首先利用ANSYS HFSS®軟體,以中心頻率為2.40GHz的線性極化(Linearly Polarization)微帶天線進行電磁模擬分析;在前述準備工作之後,本研究將採用線性極化微帶天線作為天線單元(Antenna Element),再利用多枝幹耦合器(Branch-line Coupler)建立雙天線單元組成的陣

列天線(Array Antenna),使其擁有比線性極化微帶天線較高的頻寬(Bandwidth)與輻射效率。之後會將其中一個天線單元逆時針旋轉90度,與天線單元旋轉0度進行模擬分析,以得出最佳配置方式,並進行以玻璃纖維和蜂巢結構包埋後的電磁模擬分析。 本研究在完成模擬後,將進一步以蝕刻方式進行微帶天線製作,並且利用真空加壓成型法進行智慧結構製作;之後便利用網路分析儀進行智慧結構量測,依據量測結果與模擬進行比較分析,得出反射損耗(Return Loss)和頻寬皆沒有太大差異,並且確認中心頻率偏移在可容許範圍內;最後本論文以此智慧結構結合Wi-Fi分享器,且得以透過個人智慧型手機瀏覽網頁,確

認智慧結構之訊號傳輸能力,並且經由輻射場型的模擬得知智慧結構有近似圓極化的趨勢,而在X-Z平面的0度到30度方向和X-Y平面的0度到-30度方向有著較高的增益表現。

提升無線網路於室內功率之研究

為了解決router天線方向的問題,作者洪忠緯 這樣論述:

近幾年,3C產品的功能神速進步以及對生活上帶來許多便利,雲端的大數據及類神經網路或是AI運算才是此成就的因素,然而這些運算數據都需要靠電電磁波與3C產品互傳,家用無線網路分享器與戶外用的大型基地台就是扮演這訊號連結的重要角色。 然而電磁波功率會因為自然的物理現象,造成訊號被障礙物抵消或是折射,如建築物或是牆壁甚至金屬鐵門窗,導致分享器的全向性天線發射訊號不能夠穩定輸出,接收用的3C產品數據處理上產生延遲停頓,甚至誤動作。 本論文的實驗目的,是利用生活中容易取得的金屬,將放在牆腳上的分享器,把部分被牆壁抵消之功率訊號,利用金屬能導電之原理,將訊號有效的產生反射作用,再與主訊號合併,讓接收用

的3C產品,能獲得更穩定電磁波訊號,增加數據處理的穩定度。 也因為銅金屬反射,能使電磁波增加5~15dbm,減少多餘供電用放大電路,使得再使用上能將訊號強度適度優化,增加使用穩定度,並降低額外的成本。