erp工程師104的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

erp工程師104的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦(美)馬爾科·盧克沙寫的 Kubernetes in Action中文版 可以從中找到所需的評價。

朝陽科技大學 工業工程與管理系 林均燁所指導 洪郁惠的 策略性與數位化人力資源管理系統的系統化發展戰略:領導統御與溝通協調是成功的關鍵 (2020),提出erp工程師104關鍵因素是什麼,來自於策略性人力資源管理、數位化人力資源管理、領導統御、溝通協調、組織永續發展戰略。

而第二篇論文國立政治大學 資訊管理學系 洪為璽、季延平所指導 許耀堂的 影響營建業建築資訊模型導入意願之關鍵因素: 科技、組織、環境之構面探討 (2020),提出因為有 建築資訊模型、導入意願、科技導入、科技-組織-環境模型、問卷調查的重點而找出了 erp工程師104的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了erp工程師104,大家也想知道這些:

Kubernetes in Action中文版

為了解決erp工程師104的問題,作者(美)馬爾科·盧克沙 這樣論述:

本書主要講解如何在Kubernetes中部署分散式容器應用。本書開始部分概要介紹了Docker和Kubernetes的由來和發展,然後通過在Kubernetes中部署一個應用程序,一點點增加功能,逐步加深我們對於Kubernetes架構的理解和操作的實踐。在本書的後面部分,也可以學習一些高階的主題,比如監控、調試及伸縮。Kubernetes是希臘文,意思是「舵手」,帶領我們安全地到達未知水域。Kubernetes這樣的容器編排系統,會幫助我們妥善地管理分散式應用的部署結構和線上流量,高效地組織容器和服務。Kubernetes作為數據中心操作系統,在設計軟體系統時,能夠盡量降低在底層網路和硬體設

施上的負擔。 [美]馬爾科·盧克沙(Marko Luksa),是一位擁有20年以上專業開發經驗的軟體工程師,經手項目小到簡單的Web應用,大到ERP系統、框架和中間件軟體,應有盡有。在為Red Hat工作期間,他從Google App Engine API實現的開發起步, 這些API將基於Red Hat的JBoss中間件產品,之後他一直在為CDI/Weld、Infinispan/JBoss DataGrid等項目貢獻力量。2014后, 他加入Red Hat的Cloud Enablement團隊,負責 Kubernetes和相關技術開發的更新,保障公司的中間件軟體能將Ku

bernetes與OpenShift特性的潛能完全發揮出來。 七牛容器雲,(KIRK)團隊,是負責七牛雲基於自身公有雲業務在容器方面的多年實踐經驗,針對企業應用快速部署、便捷運維打造的容器雲計算平台。提供持續集成、彈性伸縮、應用市場等功能特性,使企業專註于業務邏輯開發,縮短業務上線周期,優化資源利用率,提高服務響應效率的一支技術團隊。 1  Kubernetes 介紹1 1.1 Kubernetes 系統的需求 2 1.1.1 從單體應用到微服務 2 1.1.2 為應用程式提供一個一致的環境 5 1.1.3 邁向持續交付 :DevOps 和無運維 6 1.2 介紹容器技術

7 1.2.1 什麼是容器 7 1.2.2 Docker 容器平臺介紹 11 1.2.3 rkt——一個 Docker 的替代方案 14 1.3 Kubernetes 介紹 15 1.3.1 初衷 15 1.3.2 深入淺出地瞭解 Kubernetes 15 1.3.3 Kubernetes 集群架構 17 1.3.4 在 Kubernetes 中運行應用 18 1.3.5 使用 Kubernetes 的好處 20 1.4 本章小結 22 2  開始使用 Kubernetes 和 Docker 23 2.1 創建、運行及共用容器鏡像 23 2.1.1 安裝 Docker 並運行 Hello W

orld 容器 24 2.1.2 創建一個簡單的 Node.js 應用 26 2.1.3 為鏡像創建 Dockerfile 27 2.1.4 構建容器鏡像 27 2.1.5 運行容器鏡像 30 2.1.6 探索運行容器的內部 31 2.1.7 停止和刪除容器 32 2.1.8 向鏡像倉庫推送鏡像 33 2.2 配置 Kubernetes 集群 34 2.2.1 用 Minikube 運行一個本地單節點 Kubernetes 集群 34 2.2.2 使用 Google Kubernetes Engine 託管 Kubernetes 集群 36 2.2.3 為 kubectl 配置別名和命令列補齊

39 2.3 在 Kubernetes 上運行第一個應用 40 2.3.1 部署 Node.js 應用 40 2.3.2 訪問 Web 應用 43 2.3.3 系統的邏輯部分 45 2.3.4 水準伸縮應用 46 2.3.5 查看應用運行在哪個節點上 49 2.3.6 介紹 Kubernetes dashboard 50 2.4 本章小結 51 3  pod :運行於 Kubernetes 中的容器 53 3.1 介紹 pod 53 3.1.1 為何需要 pod 54 3.1.2 瞭解 pod 55 3.1.3 通過 pod 合理管理容器 56 3.2 以 YAML 或 JSON 描述檔創建

pod 58 3.2.1 檢查現有 pod 的 YAML 描述檔 59 3.2.2 為 pod 創建一個簡單的 YAML 描述檔 61 3.2.3 使用 kubectl create 來創建 pod 63 3.2.4 查看應用程式日誌 64 3.2.5 向 pod 發送請求 65 3.3 使用標籤組織 pod 66 3.3.1 介紹標籤 66 3.3.2 創建 pod 時指定標籤 67 3.3.3 修改現有 pod 的標籤 68 3.4 通過標籤選擇器列出 pod 子集 69 3.4.1 使用標籤選擇器列出 pod 69 3.4.2 在標籤選擇器中使用多個條件 71 3.5 使用標籤和選擇器

來約束 pod 調度 71 3.5.1 使用標籤分類工作節點 72 3.5.2 將 pod 調度到特定節點 72 3.5.3 調度到一個特定節點 73 3.6 注解 pod73 3.6.1 查找對象的注解 74 3.6.2 添加和修改注解 74 3.7 使用命名空間對資源進行分組 75 3.7.1 瞭解對命名空間的需求 75 3.7.2 發現其他命名空間及其 pod 75 3.7.3 創建一個命名空間 76 3.7.4 管理其他命名空間中的物件 77 3.7.5 命名空間提供的隔離 78 3.8 停止和移除 pod 78 3.8.1 按名稱刪除 pod 78 3.8.2 使用標籤選擇器刪除 p

od 79 3.8.3 通過刪除整個命名空間來刪除 pod 80 3.8.4 刪除命名空間中的所有 pod,但保留命名空間 80 3.8.5 刪除命名空間中的(幾乎)所有資源 80 3.9 本章小結 81 4  副本機制和其他控制器 :部署託管的 pod 83 4.1 保持 pod 健康 84 4.1.1 介紹存活探針 84 4.1.2 創建基於 HTTP 的存活探針 85 4.1.3 使用存活探針 86 4.1.4 配置存活探針的附加屬性 87 4.1.5 創建有效的存活探針 88 4.2 瞭解 ReplicationController 89 4.2.1 ReplicationContro

ller 的操作 90 4.2.2 創建一個 ReplicationController 92 4.2.3 使用 ReplicationController 94 4.2.4 將 pod 移入或移出 ReplicationController 的作用域 97 4.2.5 修改 pod 範本 100 4.2.6 水準縮放 pod 101 4.2.7 刪除一個 ReplicationController 103 4.3 使用 ReplicaSet 而不是 ReplicationController 104 4.3.1 比較 ReplicaSet 和 ReplicationController 10

4 4.3.2 定義 ReplicaSet 105 4.3.3 創建和檢查 ReplicaSet106 4.3.4 使用 ReplicaSet 的更富表達力的標籤選擇器106 4.3.5 ReplicaSet 小結 107 4.4 使用 DaemonSet 在每個節點上運行一個 pod 107 4.4.1 使用 DaemonSet 在每個節點上運行一個 pod 108 4.4.2 使用 DaemonSet 只在特定的節點上運行 pod 109 4.5 運行執行單個任務的 pod 112 4.5.1 介紹 Job 資源 112 4.5.2 定義 Job 資源 113 4.5.3 看 Job 運行

一個 pod 114 4.5.4 在 Job 中運行多個 pod 實例 114 4.5.5 限制 Job pod 完成任務的時間 116 4.6 安排 Job 定期運行或在將來運行一次 116 4.6.1 創建一個 CronJob 116 4.6.2 瞭解計畫任務的運行方式 118 4.7 本章小結 118 5  服務 :讓用戶端發現 pod 並與之通信121 5.1 介紹服務 122 5.1.1 創建服務 123 5.1.2 服務發現 129 5.2 連接集群外部的服務 132 5.2.1 介紹服務 endpoint 133 5.2.2 手動配置服務的 endpoint 133 5.2.3 

為外部服務創建別名 135 5.3 將服務暴露給外部用戶端 136 5.3.1 使用 NodePort 類型的服務 137 5.3.2 通過負載等化器將服務暴露出來 140 5.3.3 瞭解外部連接的特性 142 5.4 通過 Ingress 暴露服務 143 5.4.1 創建 Ingress 資源 145 5.4.2 通過 Ingress 訪問服務 146 5.4.3 通過相同的 Ingress 暴露多個服務 147 5.4.4 配置 Ingress 處理 TLS 傳輸 149 5.5 pod 就緒後發出信號 150 5.5.1 介紹就緒探針 151 5.5.2 向 pod 添加就緒探針 1

52 5.5.3 瞭解就緒探針的實際作用 154 5.6 使用 headless 服務來發現獨立的 pod 155 5.6.1 創建 headless 服務156 5.6.2 通過 DNS 發現 pod 156 5.6.3 發現所有的 pod——包括未就緒的 pod 157 5.7 排除服務故障 158 5.8 本章小結 159 6  卷 :將磁片掛載到容器 161 6.1 介紹卷 162 6.1.1 卷的應用示例162 6.1.2 介紹可用的卷類型 164 6.2 通過卷在容器之間共用資料 165 6.2.1 使用 emptyDir 卷 165 6.2.2 使用 Git 倉庫作為存儲卷 16

8 6.3 訪問工作節點檔案系統上的文件 171 6.3.1 介紹 hostPath 卷 171 6.3.2 檢查使用 hostPath 卷的系統 pod 172 6.4 使用持久化存儲 173 6.4.1 使用 GCE 持久磁片作為 pod 存儲卷 174 6.4.2 通過底層持久化存儲使用其他類型的卷 177 6.5 從底層存儲技術解耦 pod 179 6.5.1 介紹持久卷和持久卷聲明 179 6.5.2 創建持久卷 180 6.5.3 通過創建持久卷聲明來獲取持久卷 182 6.5.4 在 pod 中使用持久卷聲明 184 6.5.5 瞭解使用持久卷和持久卷聲明的好處 185 6.5.

6 回收持久卷 186 6.6 持久卷的動態磁碟區配置 187 6.6.1 通過 StorageClass 資源定義可用存儲類型 188 6.6.2 請求持久卷聲明中的存儲類 188 6.6.3 不指定存儲類的動態配置 190 6.7 本章小結 193 7  ConfigMap 和 Secret :配置應用程式 195 7.1 配置容器化應用程式 195 7.2 向容器傳遞命令列參數 196 7.2.1 在 Docker 中定義命令與參數 196 7.2.2 在 Kubernetes 中覆蓋命令和參數 199 7.3 為容器設置環境變數 200 7.3.1 在容器定義中指定環境變數 201 7

.3.2 在環境變數值中引用其他環境變數 201 7.3.3 瞭解硬編碼環境變數的不足之處 202 7.4 利用 ConfigMap 解耦配置 202 7.4.1 ConfigMap 介紹 202 7.4.2 創建 ConfigMap 203 7.4.3 給容器傳遞 ConfigMap 條目作為環境變數 206 7.4.4 一次性傳遞 ConfigMap 的所有條目作為環境變數 208 7.4.5 傳遞 ConfigMap 條目作為命令列參數 209 7.4.6 使用 configMap 卷將條目暴露為檔 210 7.4.7 更新應用配置且不重啟應用程式 216 7.5 使用 Secret 給

容器傳遞敏感性資料 218 7.5.1 介紹 Secret 218 7.5.2 默認權杖 Secret 介紹 218 7.5.3 創建 Secret 220 7.5.4 對比 ConfigMap 與 Secret 221 7.5.5 在 pod 中使用 Secret 222 7.6 本章小結 228 8  從應用訪問 pod 中繼資料以及其他資源 229 8.1 通過 Downward API 傳遞中繼資料 229 8.1.1 瞭解可用的中繼資料 230 8.1.2 通過環境變數暴露中繼資料 231 8.1.3 通過 downwardAPI 卷來傳遞中繼資料 234 8.2 與 Kuberne

tes API 伺服器交互 237 8.2.1 探究 Kubernetes REST API 238 8.2.2 從 pod 內部與 API 伺服器進行交互 242 8.2.3 通過 ambassador 容器簡化與 API 伺服器的交互 248 8.2.4 使用用戶端庫與 API 伺服器交互 251 8.3 本章小結 253 9  Deployment: 聲明式地升級應用 255 9.1 更新運行在 pod 內的應用程式 256 9.1.1 刪除舊版本 pod,使用新版本 pod 替換257 9.1.2 先創建新 pod 再刪除舊版本 pod 257 9.2 使用 ReplicationCo

ntroller 實現自動的輪流升級259 9.2.1 運行第一個版本的應用 259 9.2.2 使用 kubectl 來執行滾動式升級 261 9.2.3 為什麼 kubectl rolling-update已經過時 265 9.3 使用 Deployment 聲明式地升級應用 266 9.3.1 創建一個 Deployment 267 9.3.2 升級 Deployment 269 9.3.3 回滾 Deployment 273 9.3.4 控制輪流升級速率 276 9.3.5 暫停輪流升級 278 9.3.6 阻止出錯版本的輪流升級 279 9.4 本章小結 284 10  Statef

ulSet :部署有狀態的多副本應用 285 10.1 複製有狀態 pod 285 10.1.1 運行每個實例都有單獨存儲的多副本 286 10.1.2 每個 pod 都提供穩定的標識 287 10.2 瞭解 Statefulset 289 10.2.1 對比 Statefulset 和 ReplicaSet 289 10.2.2 提供穩定的網路標識 290 10.2.3 為每個有狀態實例提供穩定的專屬存儲 292 10.2.4 Statefulset 的保障 294 10.3 使用 Statefulset 295 10.3.1 創建應用和容器鏡像 295 10.3.2 通過 Stateful

set 部署應用 296 10.3.3 使用你的 pod 301 10.4 在 Statefulset 中發現夥伴節點 305 10.4.1 通過 DNS 實現夥伴間彼此發現 306 10.4.2 更新 Statefulset 308 10.4.3 嘗試集群資料存儲 309 10.5 瞭解 Statefulset 如何處理節點失效 310 10.5.1 類比一個節點的網路斷開 310 10.5.2 手動刪除 pod 312 10.6 本章小結 313 11  瞭解 Kubernetes 機理 315 11.1 瞭解架構 315 11.1.1 Kubernetes 組件的分散式特性 316 11

.1.2 Kubernetes 如何使用 etcd 318 11.1.3 API 伺服器做了什麼 322 11.1.4 API 伺服器如何通知用戶端資源變更 324 11.1.5 瞭解調度器 325 11.1.6 介紹控制器管理器中運行的控制器 327 11.1.7 Kubelet 做了什麼 331 11.1.8 Kubernetes Service Proxy 的作用 332 11.1.9 介紹 Kubernetes 外掛程式 333 11.1.10 總結概覽 335 11.2 控制器如何協作 335 11.2.1 瞭解涉及哪些組件335 11.2.2 事件鏈 336 11.2.3 觀察集群

事件 337 11.3 瞭解運行中的 pod 是什麼 339 11.4 跨 pod 網路 340 11.4.1 網路應該是什麼樣的 340 11.4.2 深入瞭解網路工作原理 341 11.4.3 引入容器網路介面 343 11.5 服務是如何實現的 344 11.5.1 引入 kube-proxy 344 11.5.2 kube-proxy 如何使用 iptables 344 11.6 運行高可用集群 346 11.6.1 讓你的應用變得高可用 346 11.6.2 讓 Kubernetes 控制平面變得高可用 347 11.7 本章小結 350 12  Kubernetes API 伺服器

的安全防護 351 12.1 瞭解認證機制 351 12.1.1 用戶和組 352 12.1.2 ServiceAccount 介紹 353 12.1.3 創建 ServiceAccount 354 12.1.4 將 ServiceAccount 分配給 pod 356 12.2 通過基於角色的許可權控制加強集群安全 358 12.2.1 介紹 RBAC 授權外掛程式 359 12.2.2 介紹 RBAC 資源 360 12.2.3 使用 Role 和 RoleBinding 363 12.2.4 使用 ClusterRole 和 ClusterRoleBinding 367 12.2.5 瞭

解默認的 ClusterRole 和 ClusterRoleBinding 376 12.2.6 理性地授予授權許可權 379 12.3 本章小結 379 13  保障集群內節點和網路安全 381 13.1 在 pod 中使用宿主節點的 Linux 命名空間 381 13.1.1 在 pod 中使用宿主節點的網路命名空間382 13.1.2 綁定宿主節點上的埠而不使用宿主節點的網路命名空間 383 13.1.3 使用宿主節點的 PID 與 IPC 命名空間 385 13.2 配置節點的安全上下文 386 13.3 限制 pod 使用安全相關的特性 396 13.4 隔離 pod 的網路 406

13.5 本章小結 410 14  計算資源管理 411 14.1 為 pod 中的容器申請資源 411 14.1.1 創建包含資源 requests 的 pod 412 14.1.2 資源 requests 如何影響調度 413 14.1.3 CPU requests 如何影響 CPU 時間分配 418 14.1.4 定義和申請自訂資源 418 14.2 限制容器的可用資源 419 14.3 瞭解 pod QoS 等級 423 14.4 為命名空間中的 pod 設置默認的 requests 和 limits 427 14.5 限制命名空間中的可用資源總量 431 14.6 監控 pod 的

資源使用量 436 14.7 本章小結 442 15  自動橫向伸縮 pod 與集群節點 443 15.1 pod 的橫向自動伸縮 444 15.2 pod 的縱向自動伸縮 456 15.3 集群節點的橫向伸縮 457 15.4 本章小結 461 16  高級調度463 16.1 使用污點和容忍度阻止節點調度到特定節點 463 16.2 使用節點親緣性將 pod 調度到特定節點上 469 16.3 使用 pod 親緣性與非親緣性對 pod 進行協同部署 475 16.4 本章小結 483 17  開發應用的最佳實踐 485 17.1 集中一切資源 486 17.2 瞭解 pod 的生命週期 4

87 17.3 確保所有的用戶端請求都得到了妥善處理 500 17.4 讓應用在 Kubernetes 中方便運行和管理 505 17.5 開發和測試的最佳實踐 510 17.6 本章小結 515 18  Kubernetes 應用擴展 517 18.1 定義自訂 API 物件 517 18.2 使用 Kubernetes 服務目錄擴展 Kubernetes 528 18.3 基於 Kubernetes 搭建的平臺 536 18.4 本章小結 541 A  在多個集群中使用 kubectl 543 B  使用 kubeadm 配置多節點集群 549 C  使用其他容器運行時 563 D  Cl

uster Federation 567  

策略性與數位化人力資源管理系統的系統化發展戰略:領導統御與溝通協調是成功的關鍵

為了解決erp工程師104的問題,作者洪郁惠 這樣論述:

  現今臺灣面臨企業人才流失與短缺的困境。企業無法留住人才的原因無非就是因為薪資待遇以及工作成就感、環境氛圍與未來發展等因素。留住人才的議題,其實就是策略性人力資源以及如何創造工作場域有形與無形氛圍的議題!尤其在智慧數位化轉型加速發展的未來,思考型工作人力與團隊將會成為組織競爭力的核心。而如何藉由正確的領導統御與溝通協調理念協助企業從戰略目標建構、凝聚組織團隊文化、形成共享共創的學習型組織,更是當前企業留住人才與永續發展的關鍵。  為此,本研究將採用質性研究方法從策略性人力資源到數位化轉型的人力資源系統需求的發展模式探討企業組織內部人力資源系統發展議題。探究企業組織如何落實從戰略目標設定到人

力資源系統發展的過程、以及系統發展過程的關鍵成功要素,用以協助企業在面對數位化轉型的過程中得以因為核心競爭力的提升而成功轉型。  本研究期望能產出策略性與數位化人力資源管理的系統化發展戰略、並且定義出發展過程中的關鍵成功要素。期望本研究的產出對於企業面對策略性人力資源以及未來數位化轉型的人力資源管理系統發展有所幫助。

影響營建業建築資訊模型導入意願之關鍵因素: 科技、組織、環境之構面探討

為了解決erp工程師104的問題,作者許耀堂 這樣論述:

建築資訊模型(Building Information Model, BIM)是近代建築領域的一項創新技術,能夠改進整個部門的工作流程與效率。通過資訊的共享與視覺化,可以加速建築業合作夥伴之間的溝通,並改善建築供應鏈各個企業的決策和整合。BIM技術的發展對建築設計與施工公司造成了競爭壓力,導入與應用此技術的需求也日漸增加。然而,儘管研究人員和從業人員一致認為BIM具有許多潛在的好處,其在營建業的採用率仍然較低,導致目前建築全生命週期無法實現BIM技術所能帶來的好處。因此,對於要成功地在營建組織中採用BIM,了解影響BIM導入的因素至關重要。然而,BIM技術的接受與導入並不是企業單純的批准或拒

絕可以決定的,許多因素都會影響BIM技術的接受和導入。本研究採納科技-組織-環境模型 (Technology, Organization and Environment, TOE),來找出影響台灣建設公司導入BIM意願的影響因素。以問卷調查的方式,針對北部地區新北市、新竹市、新竹縣不動產開發商業同業公會會員,蒐集了436份有效問卷進行多元階層迴歸分析,以驗證本研究所提出之研究模型。研究結果發現,科技構面的相對優勢、相容性、複雜性、有用性,組織的高階主管支持、資訊科技基礎設施,以及環境構面的外部力量、政府政策等因素,皆會顯著影響營建業導入BIM的意願。而科技構面的導入成本以及組織構面的組織就緒度

則不會造成顯著的影響。本研究為學術與實務的領域提供了,BIM技術在營建業中成功導入與實行的因素。此外,通過提高對影響BIM技術採納程度之影響因素的理解,營建相關人員以及政府能夠制訂相關之政策,以促進BIM技術在台灣的推動,近而改善建設公司的績效以及整體營建業的技術整合能力。希望透過本研究為實務人員提供重要參考依據,並為學術界提供不同的研究與思考方向。