cobalt alloys的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

cobalt alloys的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦Dwivedi, Dheerendra Kumar寫的 Fundamentals of Metal Joining: Processes, Mechanism and Performance 和Davim, J. Paulo (EDT)的 Machining of Hard Materials都 可以從中找到所需的評價。

另外網站Cobalt | Tech Steel & Materials也說明:The most popular use for the high-temperature cobalt alloy is in gas turbine (turbojet) aircraft engines. Corrosion-resistant nickel and cobalt alloys resist ...

這兩本書分別來自 和所出版 。

國立陽明交通大學 材料科學與工程學系所 曾俊元、黃爾文所指導 古安銘的 異質元素摻雜還原氧化石墨烯電極於儲能裝置之應用研究 (2021),提出cobalt alloys關鍵因素是什麼,來自於氧化石墨、還原氧化石墨、摻雜鈷的石墨、比電容(單位電容)、超級電容器、能量和功率密度。

而第二篇論文國立中正大學 物理系研究所 張文成、張晃暐所指導 廖若涵的 RCo5-xFex薄帶磁性與微結構之研究 (R = Ce、Sm、Y及Pr;x=0-3.5) (2021),提出因為有 RCo5 合金系統、Fe 置換效應、熔融旋淬、外質磁性、第一原理、本質磁性的重點而找出了 cobalt alloys的解答。

最後網站Cobalt alloys - trade | RS-Recycling - metals and alloys則補充:This high cobalt content gives the alloy a high abrasion resistance. In addition, cobalt can be used at high temperatures and it is acid- and corrosion- ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了cobalt alloys,大家也想知道這些:

Fundamentals of Metal Joining: Processes, Mechanism and Performance

為了解決cobalt alloys的問題,作者Dwivedi, Dheerendra Kumar 這樣論述:

Dheerendra Kumar Dwivedi, PhD, Professor in the Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee. He has completed his Bachelor of Engineering (mechanical engineering) from Government Engineering College Rewa in 1993, Master of Engineering (welding engineer

ing) from University of Roorkee (now IIT Roorkee) in 1997 and Doctorate (metallurgical engineering) from MNIT Jaipur in 2003. He has been involved in teaching, research and development, industrial consultancy for the last 25 years broadly in the area of manufacturing technologies in general and cast

ing, welding and surfacing modification for improved mechanical properties in particular. Recipient of Binani Gold Medal Award-2001 (IIM), and recognized in top 1% Global Scientists in Materials Domain by Elsevier-Stanford (2020). Five best research paper awards in National/International conferences

.He has developed more than 200 hrs video lectures in area of manufacturing technologies under MOOCS/NPTEL program of MHRD Govt. of India. He supervised 16 PhD thesis and more than 50 M. Tech. dissertations. He has published in more than 148 research papers in peer reviewed SCI/SCIE indexed Internat

ional Journal with h factor 34 and i-10 index 84 with total citation more than 3650 and RG Score 36.62. He has published two books namely "Production and Properties of Cast Al-Si Alloys" with New Age International, New Delhi in 2013 and "Surface Engineering for Enhanced Tribological life of componen

t" with Springer nature in 2018. He has executed more than 20 Research & Development project and 50 industrial consultancy project. Filed three Indian patents on technologies developed in area of A-GTAW and FSW. He has undertaken eight bilateral international collaborative research projects with rep

uted university namely Chemnitz University, Germany, Technical University Munich, Germany, Institute of Metal Research Shenyang, China, University of Belgorod, Russia, University of Coimbra, Portugal, University of Uberlandia, Brazil, University of Zacatecas, Mexico and Physical Technical Institute,

Minsk, Belarus. Author has undertaken research projects in the area of friction stir welding, welding bonding, activated flux GTAW, oxy-fuel flame and high velocity oxy-fuel spraying for improved abrasive and erosive wear resistance, laser cladding of none-cobalt base alloys for improved cavitation

resistance, laser assisted nitriding and ion implantation cast martensitic stainless steel for improved erosion resistance, friction stir processing of cast Al-Si alloys, Ni-Al-Bronzes.

異質元素摻雜還原氧化石墨烯電極於儲能裝置之應用研究

為了解決cobalt alloys的問題,作者古安銘 這樣論述:

儲能技術超級電容器的出現為儲能行業的發展提供了巨大的潛力和顯著的優勢。碳基材料,尤其是石墨烯,由於具有蜂窩狀晶格,在儲能應用中備受關注,因其非凡的導電導熱性、彈性、透明性和高比表面積而備受關注,使其成為最重要的儲能材料之一。石墨烯基超級電容器的高能量密度和優異的電/電化學性能的製造是開發大功率能源最緊迫的挑戰之一。在此,我們描述了生產石墨烯基儲能材料的兩種方法,並研究了所製備材料作為超級電容器裝置的電極材料的儲能性能。第一,我們開發了一種新穎、經濟且直接的方法來合成柔性和導電的 還原氧化石墨烯和還原氧化石墨烯/多壁奈米碳管複合薄膜。通過三電極系統,在一些強鹼水性電解質,如 氫氧化鉀、清氧化鋰

和氫氧化鈉中,研究加入多壁奈米碳管對還原氧化石墨烯/多壁奈米碳管複合薄膜電化學性能的影響。通過循環伏安法 (CV)、恆電流充放電 (GCD) 和電化學阻抗譜 (EIS) 探測薄膜的超級電容器行為。通過 X 射線衍射儀 (XRD)、拉曼光譜儀、表面積分析儀 (BET)、熱重分析 (TGA)、場發射掃描電子顯微鏡 (FESEM) 和穿透電子顯微鏡 (TEM) 對薄膜的結構和形態進行研究. 用 10 wt% 多壁奈米碳管(GP10C) 合成的還原氧化石墨烯/多壁奈米碳管薄膜表現出 200 Fg-1 的高比電容,15000 次循環測試後保持92%的比電容,小弛豫時間常數(~194 ms)和在2M氫氧化

鉀電解液中的高擴散係數 (7.8457×10−9 cm2s-1)。此外,以 GP10C 作為陽極和陰極,使用 2M氫氧化鉀作為電解質的對稱超級電容器鈕扣電容在電流密度為 0.1 Ag-1 時表現出 19.4 Whkg-1 的高能量密度和 439Wkg-1 的功率密度,以及良好的循環穩定性:在,0.3 Ag-1 下,10000 次循環後,保持85%的比電容。第二,我們合成了一種簡單、環保、具有成本效益的異質元素(氮、磷和氟)共摻雜氧化石墨烯(NPFG)。通過水熱功能化和冷凍乾燥方法將氧化石墨烯進行還原。此材料具有高比表面積和層次多孔結構。我們廣泛研究了不同元素摻雜對合成的還原氧化石墨烯的儲能性能

的影響。在相同條件下測量比電容,顯示出比第一種方法生產的材料更好的超級電容。以最佳量的五氟吡啶和植酸 (PA) 合成的氮、磷和氟共摻雜石墨烯 (NPFG-0.3) 表現出更佳的比電容(0.5 Ag-1 時為 319 Fg-1),具有良好的倍率性能、較短的弛豫時間常數 (τ = 28.4 ms) 和在 6M氫氧化鉀水性電解質中較高的電解陽離子擴散係數 (Dk+ = 8.8261×10-9 cm2 s–1)。在還原氧化石墨烯模型中提供氮、氟和磷原子替換的密度泛函理論 (DFT) 計算結果可以將能量值 (GT) 從 -673.79 eV 增加到 -643.26 eV,展示了原子級能量如何提高與電解質

的電化學反應。NPFG-0.3 相對於 NFG、PG 和純 還原氧化石墨烯的較佳性能主要歸因於電子/離子傳輸現象的平衡良好的快速動力學過程。我們設計的對稱鈕扣超級電容器裝置使用 NPFG-0.3 作為陽極和陰極,在 1M 硫酸鈉水性電解質中的功率密度為 716 Wkg-1 的功率密度時表現出 38 Whkg-1 的高能量密度和在 6M氫氧化鉀水性電解質中,24 Whkg-1 的能量密度下有499 Wkg-1的功率密度。簡便的合成方法和理想的電化學結果表明,合成的 NPFG-0.3 材料在未來超級電容器應用中具有很高的潛力。

Machining of Hard Materials

為了解決cobalt alloys的問題,作者Davim, J. Paulo (EDT) 這樣論述:

Hard machining is a recent technology that can be defined as a direct machining operation of workpieces that have hardness values typically in the 45-70HRc range using tools with geometrically-defined cutting edges.This operation always presents the challenge of selecting a cutting tool insert th

at facilitates an extended tool life and high-precision machining of the component. Hard machining presents several advantages when compared with the traditional methodology based on finish grinding operations after heat treatment of workpieces. This technology also offers a great contribution to su

stainable manufacturing.Hard materials comprise hardened steels, high-speed steels, heat-treatable steels, tool steels, bearing steels and chilled/white cast irons. Inconnel, Hastelloy, cobalt alloys for biomedical applications and other special materials are also classified as hard materials. These

materials are in constant use by the automotive industry for bearing production and for the machining of dies and moulds as well as other components for advanced industries.Machining of Hard Materials aims to provide the fundamentals and recent advances in the study of hard machining of materials.

All chapters are written by international experts in this important field of research.Chapter 1 defines machining of hard materials and its application in industry. Chapter 2 is dedicated to advanced cutting tools used for the machining of hard materials. Chapter 3 describes the mechanics of the cut

ting and chip formation. Chapter 4 contains information on surface integrity. Chapter 5 is dedicated to finite element modelling and simulation. Finally, Chapter 6 is dedicated to computational methods and optimization.Machining of Hard Materials can serve as a useful reference for academics; manufa

cturing and materials researchers; manufacturing and mechanical engineers; and professionals in machining and related industries.

RCo5-xFex薄帶磁性與微結構之研究 (R = Ce、Sm、Y及Pr;x=0-3.5)

為了解決cobalt alloys的問題,作者廖若涵 這樣論述:

本實驗使用高冷卻速率之銅輪轉速(80 m/s)製備RCo5-xFex合金薄帶以控制微結構,採用有較高磁矩的Fe置換Co藉以提高其磁化量,研究RCo5-xFex薄帶磁性及微結構,並以第一原理計算研究其本質磁性。首先,實驗結果顯示適量Fe置換Co於CeCo5-xFex (x=0-2)合金薄帶可維持1:5單相結構,藉以提升其磁化量。隨著Fe的含量增加,其半高寬也隨之變寬,TEM分析也證實其晶粒尺寸有減小現象。但隨著Fe的置換量提升,雖晶粒逐漸細化,但iHc卻隨之下降。為進一步提升磁性,嘗試以Sm置換Ce於SmxCe1-xCo3Fe2 (x = 0.25-1)薄帶中。Sm置換Ce可使整體磁性提升,其

與晶粒細化、且主要與SmCo5的本質磁性皆高於CeCo5有關。而SmCo3Fe2擁有最佳磁性: Br為7.3 kG;iHc為10.0 kOe;(BH)max為9.6 MGOe。再者,在RCo5-xFex合金薄帶(R= Y, Ce, Pr, Sm)中,以適量的Fe置換既可使磁化量大幅提升,也可使晶粒尺寸減小,但矯頑磁力則下降。而第一原理計算結果顯示在RCo5-xFex (R=Ce、Sm、Y、Pr;x=0-3.5)系統中,隨著Fe之置換量提升,HA有所改變。在CeCo5-xFex(x=0-2)合金薄帶中,HA有先升後降的趨勢;而RCo5-xFex (R=Sm、Y、Pr;x=0-3)合金薄帶中,隨著

Fe的置換量增加,HA則隨之下降,其Fe原子貢獻之磁矩從2.5±0.15 μB 提升至2.7±0.17 μB藉以提升了整體磁化量。計算結果與實驗之iHc 和4πM12kOe趨勢符合,此可解釋RCo5-xFex (R=Ce、Sm、Y、Pr;x=0-3.5)合金薄帶iHc隨Fe含量提升而下降的原因。此外,在RCo5-xFex 薄帶中,1:5相之居禮溫度隨著Fe的置換量增加而有不同有趣的趨勢,其中在R=Y及Ce中,1:5相居禮溫度隨之提升;當R=Sm,其居禮溫度則隨之下降;當R=Pr,其居禮溫度則有先升後降之趨勢。此可用最鄰近與次鄰近Co-Co及Co-Fe間距與磁性原子間之交換作用之關聯解釋。