android清除記憶體的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

android清除記憶體的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦高洪岩寫的 NoSQL開發完美方案:Redis+Docker高性能虛擬化實戰 和周志明的 深入理解Java虛擬機:JVM高級特性與最佳實踐(第3版)都 可以從中找到所需的評價。

另外網站Android手機內部記憶體不足怎麼辦? - 發現網路也說明:5. 「清除快取」和「清除資料」:. 在開啟的頁面,紅框中是這個應用程式占用記憶體的資訊。「應用程式」占0.00位 ...

這兩本書分別來自深智數位 和機械工業所出版 。

國立臺灣科技大學 電子工程系 吳晋賢所指導 張浩威的 一種基於機器學習之霍夫曼編碼用以改善TLC快閃記憶體的可靠度 (2019),提出android清除記憶體關鍵因素是什麼,來自於霍夫曼編碼、機器學習、TLC快閃記憶體、快閃記憶體轉換層。

而第二篇論文中央警察大學 資訊管理研究所 王旭正所指導 張詠竣的 因應反鑑識攻擊之記憶體萃取分析證據研究 (2015),提出因為有 網際網路、反鑑識、記憶體鑑識、數位鑑識的重點而找出了 android清除記憶體的解答。

最後網站如何定期清理記憶體保持效能?|大型液晶E65-720 ... - BenQ則補充:有三個方式可以清理記憶體 ... 1. 電視緩存記憶體:遙控器操作每30 次快速開關機後,下一次按壓遙控器電源鍵,電視會自動作一次完整開機,此時會清掉前30 次 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了android清除記憶體,大家也想知道這些:

NoSQL開發完美方案:Redis+Docker高性能虛擬化實戰

為了解決android清除記憶體的問題,作者高洪岩 這樣論述:

還在MySQL嗎? 全世界都在NoSQL了,首選當然就是Redis! 好裝好用還能用Docker做叢集分佈,帶你進入巨量資料的世界。   絕大多數Redis初學者只會拿Redis當Map用,只會在單機環境上只會針對String資料類型進行SET和GET操作,這當然不是Redis!Redis本身就支援多台叢集的功能,這才是NoSQL的精神所在。當系統出現大量存取需求時,單台Redis伺服器並沒有形成高可用的運行環境,這也是大家使用Redis最常見的錯誤。   本書程式設計師提供一本實戰開發的Redis圖書,包括高頻使用的Redis運行維護知識、使用常用的Redis Java Client

API框架Jedis來操作Redis伺服器的知識和技能。書中充實地介紹了常用Command命令的使用方法,介紹的命令的覆蓋率達到90%以上。當然最流行的Docker佈署方式也是Redis的最佳拍檔,本書也完全介紹。   ▌本書重點   完整解析Redis的5大資料類型String、Hash、List、Set和Sorted Set   Connection類型命令   Key類型命令   HyperLogLog、Redis Bloom布隆篩檢程式   控制頻率的Redis-Cell模組   高性能佇列的Pub/Sub命令   資料排序統計的Streaming   批次執行的Pipelinin

g   持久化、主從複製以及檢查點的故障發現/轉移   使用ACL來對Key進行保護   ▌目標讀者   所有使用 Redis 和 Jedis 進行程式設計的開發人員。   伺服器和資料儲存系統開發人員。   分散式系統架構師。   網際網路技術程式設計師。   網際網路技術架構師。

一種基於機器學習之霍夫曼編碼用以改善TLC快閃記憶體的可靠度

為了解決android清除記憶體的問題,作者張浩威 這樣論述:

隨著科技的發展,儲存設備的演進也從傳統硬碟(Hard Disk Drive)逐漸邁入NAND 快閃記憶體,成為主流的儲存設備。NAND 快閃記憶體具有體積小、低功耗、讀寫速度快、非揮發性…等優點,近年來隨著製程的進步,NAND 快閃記憶體也進行過多次的變革,從小容量的SLC(Single-Level Cell)到後來出現的MLC(Multi-Level Cell)、TLC(Triple-Level Cell)以及QLC(Quad-Level Cell),容量逐漸上升,但是NAND 快閃記憶體也存在了製程上的物理限制,比如資料無法覆寫原有的資料,必須清除之後才能進行寫入,有擦寫次數(P/E C

ycle)的限制以及資料長期保留在儲存設備中會造成電荷洩漏(Charge leakage),對於TLC NAND Flash而言,可靠度(Reliability)低落與壽命(Life Time)較短的問題更為明顯。因此,本文將提出一種透過觀察資料並使用深度學習來動態選擇霍夫曼編碼方式的方法,透過該方法可以改變NAND 快閃記憶體中儲存狀態的分佈(VTH Distribution),以降低儲存資料時的位元錯誤率,為此還設計一種權重分數調節的機制,改決定不同深度學習的模型,並且設計一種適用於資料壓縮的FTL,使整體的可靠度得以改善。

深入理解Java虛擬機:JVM高級特性與最佳實踐(第3版)

為了解決android清除記憶體的問題,作者周志明 這樣論述:

這是一部從工作原理和工程實踐兩個維度深入剖析JVM的著作,是電腦領域公認的經典,繁體版在臺灣也頗受歡迎。 自2011年上市以來,前兩個版本累計印刷36次,銷量超過30萬冊,兩家主要網路書店的評論近90000條,內容上近乎零差評,是原創電腦圖書領域不可逾越的豐碑。 第3版在第2版的基礎上做了重大修訂,內容更豐富、實戰性更強:根據新版JDK對內容進行了全方位的修訂和升級,圍繞新技術和生產實踐新增逾10萬字,包含近50%的全新內容,並對第2版中含糊、瑕疵和錯誤內容進行了修正。 全書一共13章,分為五大部分: ●第一部分(第1章)走近Java 系統介紹了Java的技術體系、發展歷程、虛擬機器家族

,以及動手編譯JDK,瞭解這部分內容能對學習JVM提供良好的指引。 ●第二部分(第2~5章)自動記憶體管理 詳細講解了Java的記憶體區域與記憶體溢出、垃圾收集器與記憶體分配策略、虛擬機器性能監控與故障排除等與自動記憶體管理相關的內容,以及10餘個經典的性能優化案例和優化方法; ●第三部分(第6~9章)虛擬機器執行子系統 深入分析了虛擬機器執行子系統,包括類檔結構、虛擬機器類載入機制、虛擬機器位元組碼執行引擎,以及多個類載入及其執行子系統的實戰案例; ●第四部分(第10~11章)程式編譯與代碼優化 詳細講解了程式的前、後端編譯與優化,包括前端的易用性優化措施,如泛型、主動裝箱拆箱、條件編

譯等的內容的深入分析;以及後端的性能優化措施,如虛擬機器的熱點探測方法、HotSpot的即時編譯器、提前編譯器,以及各種常見的編譯期優化技術; ●第五部分(第12~13章)高效併發 主要講解了Java實現高併發的原理,包括Java的記憶體模型、執行緒與協程,以及執行緒安全和鎖優化。 全書以實戰為導向,通過大量與實際生產環境相結合的案例分析和展示瞭解決各種Java技術難題的方案和技巧。   周志明(博士) 資深Java技術專家-機器學習技術專家和企業級開發技術專家,現任遠光軟體研究院院長。 開源技術的積極宣導者和推動者,對電腦科學相關的多個領域都有深刻的見解,尤其是人工智慧

-Java技術和敏捷開發等,對虛擬機器技術有非常深入的研究。 撰寫了《深入理解Java虛擬機器》《深入理解OSGi》《智慧的疆界》等多本著作,翻譯了《Java虛擬機器規範》等著作。其中《深入理解Java虛擬機器》已累計印刷逾36次,總銷超過30萬冊,成為原創電腦專業圖書領域難以逾越的豐碑。   前言 致謝 【第一部分 走近Java】 第1章 走近Java 2 1.1 概述 2 1.2 Java技術體系 3 1.3 Java發展史 4 1.4 Java虛擬機器家族 12 1.4.1 虛擬機器始祖:Sun Classic/Exact VM 12 1.4.2 武林盟主:Hot

Spot VM 13 1.4.3 小家碧玉:Mobile/Embedded VM 14 1.4.4 天下第二:BEA JRockit/IBM J9 VM 15 1.4.5 軟硬合璧:BEA Liquid VM/Azul VM 16 1.4.6 挑戰者:Apache Harmony/Google Android Dalvik VM 17 1.4.7 沒有成功,但並非失敗:Microsoft JVM及其他 18 1.4.8 百家爭鳴 19 1.5 展望Java技術的未來 21 1.5.1 無語言傾向 21 1.5.2 新一代即時編譯器 23 1.5.3 向Native邁進 24 1.5.4 靈活的

胖子 26 1.5.5 語言語法持續增強 27 1.6 實戰:自己編譯JDK 29 1.6.1 獲取源碼 29 1.6.2 系統需求 31 1.6.3 構建編譯環境 33 1.6.4 進行編譯 34 1.6.5 在IDE工具中進行源碼調試 36 1.7 本章小結 39   【第二部分 自動記憶體管理】 第2章 Java記憶體區域與記憶體溢出異常 42 2.1 概述 42 2.2 運行時資料區域 42 2.2.1 程式計數器 43 2.2.2 Java虛擬機器棧 43 2.2.3 本地方法棧 44 2.2.4 Java堆 44 2.2.5 方法區 46 2.2.6 運行時常量池 47 2.2.7

 直接記憶體 47 2.3 HotSpot虛擬機器對象探秘 48 2.3.1 對象的創建 48 2.3.2 物件的記憶體佈局 51 2.3.3 對象的訪問定位 52 2.4 實戰:OutOfMemoryError異常 53 2.4.1 Java堆溢出 54 2.4.2 虛擬機器棧和本地方法棧溢出 56 2.4.3 方法區和運行時常量池溢出 61 2.4.4 本機直接記憶體溢出 65 2.5 本章小結 66 第3章 垃圾收集器與記憶體分配策略 67 3.1 概述 67 3.2 對象已死? 68 3.2.1 引用計數演算法 68 3.2.2 可達性分析演算法 70 3.2.3 再談引用 71 3

.2.4 生存還是死亡? 72 3.2.5 回收方法區 74 3.3 垃圾收集演算法 75 3.3.1 分代收集理論 75 3.3.2 標記-清除演算法 77 3.3.3 標記-複製演算法 78 3.3.4 標記-整理演算法 79 3.4 HotSpot的演算法細節實現 81 3.4.1 根節點枚舉 81 3.4.2 安全點 82 3.4.3 安全區域 83 3.4.4 記憶集與卡表 84 3.4.5 寫屏障 85 3.4.6 併發的可達性分析 87 3.5 經典垃圾收集器 89 3.5.1 Serial收集器 90 3.5.2 ParNew收集器 92 3.5.3 Parallel Scav

enge收集器 93 3.5.4 Serial Old收集器 94 3.5.5 Parallel Old收集器 95 3.5.6 CMS收集器 96 3.5.7 Garbage First收集器 98 3.6 低延遲垃圾收集器 104 3.6.1 Shenandoah收集器 105 3.6.2 ZGC收集器 112 3.7 選擇合適的垃圾收集器 121 3.7.1 Epsilon收集器 121 3.7.2 收集器的權衡 121 3.7.3 虛擬機器及垃圾收集器日誌 122 3.7.4 垃圾收集器參數總結 127 3.8 實戰:記憶體分配與回收策略 129 3.8.1 對象優先在Eden分配 1

30 3.8.2 大物件直接進入老年代 131 3.8.3 長期存活的物件將進入老年代 132 3.8.4 動態物件年齡判定 134 3.8.5 空間分配擔保 135 3.9 本章小結 137 第4章 虛擬機器性能監控-故障處理工具 138 4.1 概述 138 4.2 基礎故障處理工具 138 4.2.1 jps:虛擬機器進程狀況工具 141 4.2.2 jstat:虛擬機器統計資訊監視工具 142 4.2.3 jinfo:Java配置資訊工具 143 4.2.4 jmap:Java記憶體映射工具 144 4.2.5 jhat:虛擬機器堆轉儲快照分析工具 145 4.2.6 jstack:

Java堆疊跟蹤工具 146 4.2.7 基礎工具總結 148 4.3 視覺化故障處理工具 151 4.3.1 JHSDB:基於服務性代理的調試工具 152 4.3.2 JConsole:Java監視與管理主控台 157 4.3.3 VisualVM:多合-故障處理工具 164 4.3.4 Java Mission Control:可持續線上的監控工具 171 4.4 HotSpot虛擬機器外掛程式及工具 175 4.5 本章小結 180 第5章 調優案例分析與實戰 181 5.1 概述 181 5.2 案例分析 181 5.2.1 大記憶體硬體上的程式部署策略 182 5.2.2 集群間同

步導致的記憶體溢出 184 5.2.3 堆外記憶體導致的溢出錯誤 185 5.2.4 外部命令導致系統緩慢 187 5.2.5 伺服器虛擬機器進程崩潰 187 5.2.6 不恰當資料結構導致記憶體佔用過大 188 5.2.7 由Windows虛擬記憶體導致的長時間停頓 189 5.2.8 由安全點導致長時間停頓 190 5.3 實戰:Eclipse運行速度調優 192 5.3.1 調優前的程式運行狀態 193 5.3.2 升級JDK版本的性能變化及相容問題 196 5.3.3 編譯時間和類載入時間的優化 200 5.3.4 調整記憶體設置控制垃圾收集頻率 203 5.3.5 選擇收集器降低延遲

206 5.4 本章小結 209   【第三部分 虛擬機器執行子系統】 第6章 類檔結構 212 6.1 概述 212 6.2 無關性的基石 212 6.3 Class類檔的結構 214 6.3.1 魔數與Class檔的版本 215 6.3.2 常量池 218 6.3.3 訪問標誌 224 6.3.4 類索引-父類索引與介面索引集合 225 6.3.5 欄位元表集合 226 6.3.6 方法表集合 229 6.3.7 屬性工作表集合 230 6.4 位元元組碼指令簡介 251 6.4.1 位元組碼與資料類型 251 6.4.2 載入和存儲指令 253 6.4.3 運算指令 254 6.4.4

 類型轉換指令 255 6.4.5 物件創建與訪問指令 256 6.4.6 運算元棧管理指令 256 6.4.7 控制轉移指令 257 6.4.8 方法調用和返回指令 257 6.4.9 異常處理指示 258 6.4.10 同步指令 258 6.5 公有設計,私有實現 259 6.6 Class檔結構的發展 260 6.7 本章小結 261   第7章 虛擬機器類載入機制 262 7.1 概述 262 7.2 類載入的時機 263 7.3 類載入的過程 267 7.3.1 載入 267 7.3.2 驗證 268 7.3.3 準備 271 7.3.4 解析 272 7.3.5 初始化 277 7

.4 類載入器 279 7.4.1 類與類載入器 280 7.4.2 雙親委派模型 281 7.4.3 破壞雙親委派模型 285 7.5 Java模組化系統 287 7.5.1 模組的相容性 288 7.5.2 模組化下的類載入器 290 7.6 本章小結 292   第8章 虛擬機器位元組碼執行引擎 293 8.1 概述 293 8.2 運行時棧幀結構 294 8.2.1 區域變數表 294 8.2.2 運算元棧 299 8.2.3 動態連接 300 8.2.4 方法返回位址 300 8.2.5 附加資訊 301 8.3 方法調用 301 8.3.1 解析 301 8.3.2 分派 303

8.4 動態類型語言支援 315 8.4.1 動態類型語言 316 8.4.2 Java與動態類型 317 8.4.3 java.lang.invoke包 318 8.4.4 invokedynamic指令 321 8.4.5 實戰:掌控方法分派規則 324 8.5 基於棧的位元組碼解釋執行引擎 326 8.5.1 解釋執行 327 8.5.2 基於棧的指令集與基於寄存器的指令集 328 8.5.3 基於棧的解譯器執行過程 329 8.6 本章小結 334   第9章 類載入及執行子系統的案例與實戰 335 9.1 概述 335 9.2 案例分析 335 9.2.1 Tomcat:正統的類載入

器架構 335 9.2.2 OSGi:靈活的類載入器架構 338 9.2.3 位元組碼生成技術與動態代理的實現 341 9.2.4 Backport工具:Java的時光機器 345 9.3 實戰:自己動手實現遠端執行功能 348 9.3.1 目標 348 9.3.2 思路 349 9.3.3 實現 350 9.3.4 驗證 355 9.4 本章小結 356   【第四部分 程式編譯與代碼優化】 第10章 前端編譯與優化 358 10.1 概述 358 10.2 Javac編譯器 359 10.2.1 Javac的源碼與調試 359 10.2.2 解析與填充符號表 362 10.2.3 注解處理

器 363 10.2.4 語義分析與位元組碼生成 364 10.3 Java語法糖的味道 367 10.3.1 泛型 367 10.3.2 自動裝箱-拆箱與遍歷迴圈 375 10.3.3 條件編譯 377 10.4 實戰:插入式注解處理器 378 10.4.1 實戰目標 379 10.4.2 代碼實現 379 10.4.3 運行與測試 385 10.4.4 其他應用案例 386 10.5 本章小結 386 第11章 後端編譯與優化 388 11.1 概述 388 11.2 即時編譯器 389 11.2.1 解譯器與編譯器 389 11.2.2 編譯物件與觸發條件 392 11.2.3 編譯過

程 397 11.2.4 實戰:查看及分析即時編譯結果 398 11.3 提前編譯器 404 11.3.1 提前編譯的優劣得失 405 11.3.2 實戰:Jaotc的提前編譯 408 11.4 編譯器優化技術 411 11.4.1 優化技術概覽 411 11.4.2 方法內聯 415 11.4.3 逃逸分析 417 11.4.4 公共子運算式消除 420 11.4.5 陣列邊界檢查消除 421 11.5 實戰:深入理解Graal編譯器 423 11.5.1 歷史背景 423 11.5.2 構建編譯調試環境 424 11.5.3 JVMCI編譯器介面 426 11.5.4 代碼中間表示 429

11.5.5 代碼優化與生成 432 11.6 本章小結 436   【第五部分 高效併發】 第12章 Java記憶體模型與執行緒 438 12.1 概述 438 12.2 硬體的效率與一致性 439 12.3 Java記憶體模型 440 12.3.1 主記憶體與工作記憶體 441 12.3.2 記憶體間交交交互操作 442 12.3.3 對於volatile型變數的特殊規則 444 12.3.4 針對long和double型變數的特殊規則 450 12.3.5 原子性-可見性與有序性 450 12.3.6 先行發生原則 452 12.4 Java與執行緒 455 12.4.1 執行緒的實現

455 12.4.2 Java執行緒調度 458 12.4.3 狀態轉換 460 12.5 Java與協程 461 12.5.1 內核執行緒的局限 461 12.5.2 協程的復蘇 462 12.5.3 Java的解決方案 464 12.6 本章小結 465 第13章 執行緒安全與鎖優化 466 13.1 概述 466 13.2 執行緒安全 466 13.2.1 Java語言中的執行緒安全 467 13.2.2 執行緒安全的實現方法 471 13.3 鎖優化 479 13.3.1 自旋鎖與自我調整自旋 479 13.3.2 鎖消除 480 13.3.3 鎖粗化 481 13.3.4 羽量級

鎖 481 13.3.5 偏向鎖 483 13.4 本章小結 485   附錄A 在Windows系統下編譯OpenJDK 6 486 附錄B 展望Java技術的未來(2013年版) 493 附錄C 虛擬機器位元元組碼指令表 499 附錄D 物件查詢語言(OQL)簡介 506 附錄E JDK歷史版本軌跡 512  

因應反鑑識攻擊之記憶體萃取分析證據研究

為了解決android清除記憶體的問題,作者張詠竣 這樣論述:

隨著網路發展迅速,資安事件層出不窮,使得犯罪手法不斷推陳出新,不論是個人電腦、智慧型手機及平板電腦等行動裝置,只要能連結網際網路,都有可能成為犯罪工具。網路上已有許多免費的反鑑識工具提供下載,用來協助使用者防護個人的隱私,如在公共場所使用電腦資源時,透過隱私工具清除相關的瀏覽紀錄及暫存cookies資料,或是採用檔案加密及私密瀏覽器等相關的隱私保護軟體,來確保機密資訊以及個人資料不被外流。網路上取得的反鑑識工具功能齊全,也提供開放原始碼讓用戶端進行開發,在一般的使用操作上較廣泛的使用,但是這種反鑑識工具若被非法人士不當的利用,卻可能讓為惡者用來抹除其犯罪足跡,而數位鑑識必須隨著資訊科技的進步

,有效的因應反鑑識手法所帶來的挑戰。 反鑑識工具的的發展日新月異,如資料的實體性刪除、檔案加密及網頁私密瀏覽等,數位鑑識面臨的考驗是如何從遭受反鑑識的設備當中,找出關鍵及相關的數位證據,因此,迫切的需要建立因應反鑑識的數位鑑識取證流程,鑑識人員必須熟悉各種反鑑識工具及特性,在各種可能發生的情境之下,針對不同案例擬訂一套有效的證據萃取作業。一般而言,數位證據遭受反鑑識後,相關資料難以復原,因傳統的數位鑑識著重在硬碟的取證分析,對於可揮發性記憶體的即時取證容易忽視,導致關鍵的數位證據因不慎而流失。為此,在可揮發性記憶體當中,有可能找到敏感性的關鍵證據,可用來解決鑑識人員在取證分析工作上的困難

。我們以個人電腦及智慧型手機為平台,探討可能面臨的反鑑識手法,透過瞭解反鑑識工具及其觸發的時機,如何從遭受反鑑識的設備當中,有效的萃取出對案情有幫助的關鍵證據。 本研究探討資料竊取、檔案加密及網頁隱私瀏覽之反鑑識手法,透過記憶體鑑識工具,萃取電腦與手機中的可揮發性記憶體,分析記憶體中的片段資訊,找出經反鑑識後的關鍵數位證據,如電子郵件信箱、帳號及密碼等,最後透過情境案例研究進行分析與討論,提供鑑識調查人員面對反鑑識攻擊時之因應參考對策。關鍵字:網際網路、反鑑識、記憶體鑑識、數位鑑識