Tli1956的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

明志科技大學 能源電池科技博士學位學程 楊純誠所指導 陳懷康的 複合高分子固態電解質應用於全固態鋰電池 (2021),提出Tli1956關鍵因素是什麼,來自於鋰離子電池、全固態裡金屬電池、三明治結構CPE隔離膜、聚乙烯醇、聚4-苯乙烯磺酸鋰、LATP、摻雜鋁的LLZO。

而第二篇論文國立臺灣科技大學 化學工程系 蔡大翔所指導 何長洲的 丙烯腈寡聚物基複合電解質及其鋰金屬固態電池充放電表現 (2020),提出因為有 聚丙烯腈、固態鋰金屬電池、固態聚合物電解質、複合電解質、可逆加成-斷裂鏈轉移法的重點而找出了 Tli1956的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Tli1956,大家也想知道這些:

複合高分子固態電解質應用於全固態鋰電池

為了解決Tli1956的問題,作者陳懷康 這樣論述:

Recommendation Letter from the Thesis Advisor-------------------------------------- iThesis Oral Defense Committee Certification------------------------------------------ iiAcknowledgment iii中文摘要 ------------------------------------------------------------------------------------ ivAbstra

ct------ viiTable of contents xList of tables- xixTable of abbreviations xxChapter 1: Introduction and motivation 11.1 Background of the study 11.2 General overview on lithium rechargeable batteries 41.3 All-Solid-State Lithium-Ion Batteries 61.4 All-solid-state electrolytes 81.5 Research M

otivation 10Chapter 2: Experimental method 142.1 Experimental Methods 142.1.1 Chemicals and Reagents 142.1.2 Instruments and Equipment 162.2 Experimental methods of PVA/PAN/LiTFSI/LATP/SN composite polymer electrolyte 182.2.1 Preparation of LATP ceramic fillers 182.2.2 Preparation of PVA/PA

N/LiTFSI/LATP/SN composite polymer electrolyte 182.2.3 Cathode Preparation and Full Cell Assembly 192.3 Experimental methods of sandwich structure composite polymer electrolyte based on PVA/PLSS 202.3.1 Poly(lithium 4-styrenesulfonate) preparation 202.3.2 PVA/PLSS composite polymer electrolyte p

reparation 202.3.3 Sandwich PVA/PLSS composite polymer electrolyte preparation 212.3.4 Preparation of lightweight cellulose supported composite electrolyte 222.3.5 Preparation of LiNi0.8Co0.1Mn0.1O2 from TFR hydroxide precursor 232.4 Preparation of Li-Nafion@NCM811 252.5 Preparation of composit

e cathode 252.6 Preparation of high mass loading composite cathode 252.7 Coin-cell assembly 262.8 Pouch cell assembling 272.8.1 Pouch cell assembling with sandwich-CPE 272.8.2 High energy density pouch cell assembling 272.9 Analytical Methods 282.9.1 Morphological Characterization 282.9.2 El

ectrochemical Performance Analysis 29Chapter 3: Composite polymer electrolyte based on PVA/PAN blend polymer 323.1 Introduction 323.2 Results and discussion 353.2.1 Characteristics of LATP ceramic filler 353.2.2 Characterization of CPEs 363.2.3 Electrochemical performance of LFP/CPE/Li 513.

3 Conclusions 56Chapter 4: Sandwich composite polymer electrolyte based on PVA/PLSS 584.1 Introduction 584.2 Result and discussion 614.2.1 Properties characterization 614.2.3 Galvanostatic stripping/plating cycling stability 724.2.4 Electrochemical performance of full cells 764.2.5 In situ

heat generation study 824.3 Conclusions 85Chapter 5: Preparation of lightweight composite electrolyte for high energy density lithium metal battery 865.1. Introduction 865.2 Result and discussion 885.3 Conclusions 98Chapter 6: Conclusions 1006.1. Prepared PVA/PAN/LiTFSI/LATP/SN composite po

lymer electrolyte 1006.2 Prepared sandwich PVA/PLSS composite polymer electrolyte 1006.3 Preparation of lightweight composite electrolyte for high energy density lithium metal battery 101List of achievements 102Recommendation for future work 104References --------------------------------------

-------------------------------------------- 105TABLE OF FIGURESFig 1. 1 Various battery devices comparison in regard to gravimetric and volumetric energy density. 5Fig 1. 2 Schematic demonstration of a common lithium ion battery. 6Fig 1. 3 Comparison of traditional battery and all-solid-sta

te battery. 7Fig 2. 1 Schematic representation of the interactions among PVA, PAN, LiTFSI, LATP, and SN. 19Fig 2. 2 Reaction scheme for the synthesis of PLSS. 20Fig 2. 3 Structure of the sandwich-CPE. 22Fig 2. 4 Structure of the cellulose@CPE. 23Fig 2. 5 Continuously Taylor flow react

or (TFR) (1 L capacity). 24Fig 2. 6 Various parts of a CR2032 coin-type cell in an assembling order. 26Fig 2. 7 The structure of Pouch cell with the size of 3 cm× 5 cm with 3 layers stacking. 27Fig 2. 8 The structure of Pouch cell with the size of 3 cm× 5 cm with 2 layers stacking. 28Fig 2

. 9 A typical Nyquist plot obtained for an electrochemical cell consists of a dielectric system. 29Fig 3. 1 (a) XRD patterns of the LATP powder and the standard cubic structure LATP (PDF#35-0754). (b) Particle size distribution of the LATP powder. (c) SEM image of the as-prepare LATP filler and

(d-g) SEM image and corresponding EDX mapping images for (e) Ti, (f) Al and (g) P. 36Fig 3. 2 (a) Top surface view of a CPEs membrane. (b) Cross-sectional view of the CPEs membrane. (c) Photograph of the CPEs. (d) Cross-sectional SEM image and (e–g) corresponding EDX mapping images for (e) P, (f

) Ti and (g) Al on the cross-sectional of CPEs membrane. 37Fig 3. 3 (a) XRD patterns of CPEs with various components. (b) FTIR spectra and (c) TGA curves of pure PVA, PVA/PAN blend polymer, and PVA/PAN/LiTFSI/LATP/SN CPEs. 39Fig 3. 4 Heating experiments operated at 150 oC for 3h (a) before hea

ting, (b) after heating. 40Fig 3. 5 The flammability test of CPEs and PE separator, (a) CPEs, (b) PE separator. 41Fig 3. 6 Stress-Strain cuves of pure PVA film, PVA/PAN film,PVA/LiTFSI/LATP/SN and PVA/PAN/LiTFSI/LATP/SN composite electrolyte membrane. 42Fig 3. 7 AC impedance of LATP pellet

at room temperature. 43Fig 3. 8 (a)–(c) Ionic conductivities of CPEs incorporating various contents of (a) LiTFSI, (b) LATP, and (c) SN. (d) Arrhenius plot of the PVAN50–20%LATP–10%SN CPE. 45Fig 3. 9 (a) LSV curve and (b) i–t curve and AC spectra of the CPEs. 46Fig 3. 10 The i-t curve and AC

spectra for CPE: (a) PVA/PAN/LiTFSI, (b) PVAN50-20%LATP (SN free).-------- 47Fig 3. 11 Micro-Raman spectral modes of lithium-coordinating and non-coordinating anions in CPE based on (a) PVA/PAN/LiTFSI, (b) PVAN50–20%LATP, and (c) PVAN50–20%LATP–10%SN. 49Fig 3. 12 Time-dependent voltage profiles

of the Li|PVAN50–20%LATP–10%SN|Li symmetrical cell at room temperature, (a) measured at different current densities, (b) measured at a current density of 0.1 mA cm–2. 50 Fig 3. 13 The Nyquist plot of symmetric cell and SEM images of lithium anode before and after 580 h cycling, (a) Pristine l

ithium anode, (b) lithium anode of symmetric cell after 580h cycling, (c) The EIS Nyquist plot of Li/CPEs/Li symmetric cell before and after 580 h cycling. 51Fig 3. 14 Cycling performance of an ASSLMBs having the structure Li/PVAN50–20%LATP–10%SN/LiFePO4, measured at room temperature: (a) initial

charge/discharge curves measured at rates of 0.1C, 0.2C, 0.5C, and 1C; (b) rate performance measured from 0.1C to 1C; and (c, d) cycling performance measured at (c) 0.1C and (d) 0.5C. 53Fig 3. 15 AC Impedance of all solid state Li/CPEs/LFP battery before and after cycling under 0.5C rate at room

temperature. 54Fig 3. 16 Photographs demonstrating the operation of an all-solid-state pouch lithium-metal battery at room temperature, and its safe performance even after having cut a corner off the battery (Battery Research Center of Green Energy denoted as BRCGE). 55Fig 4. 1 (a) Top surfac

e view of a PVA/PLSS30-CPE membrane. (b) Top surface view of a sandwich-CPE membrane. (c) Cross-sectional view of the sandwich-CPE membrane. (d) XRD patterns of CPEs with various components and the sandwich-CPE membrane. 62Fig 4. 2 Cross section SEM images of sandwich-CPE, (c)-(d); EDX mapping sp

ectra of the elements Zr, Al, and La on the cross-section of the Sandwich-CPE, (e); The photograph of the flexible sandwich-CPE membrane. 64Fig 4. 3 (a) TGA curves of the pure PVA, PVA/PLSS blend polymer, and sandwich-CPE membranes. (b) FTIR spectra of the pure PVA, PLSS, PVA/PLSS blend, PVA/PLSS

30-CPE, and sandwich-CPE membranes. 65Fig 4. 4 The thermal stability of the sandwich-CPE membrane and PE separator before and after heat treated at 160 oC for 3 h, (a). Before heat treated, (b). After heat treated. 66Fig 4. 5 The flammability test of sandwich-CPE and PE separator, (a). Sandwic

h-CPE, (b). PE separator. 67Fig 4. 6 Stress-Strain curves of the sandwich-CPE and PVA/PLS30-CPE membranes. 68Fig 4. 7 AC impedance of Al-LLZO pellet at room temperature. 68Fig 4. 8 (a) Ionic conductivities of CPE membranes incorporating various contents of PLSS and of the sandwich-CPE membr

anes. (b) Arrhenius plot of ionic conductivity respect to temperature of the PVA/PLSS30-CPE and sandwich-CPE membranes. (c) LSV plots of the SS/PVA/PLSS30-CPE/Li and SS/sandwich-CPE/Li structures at room temperature. (d) DC polarization curve of the Li/sandwich-CPE/Li cell at a polarization voltage

of 10 mV; inset: impedance spectra of the symmetric cell before and after polarization. 70Fig 4. 9 Impedance spectra of Li/PVA/PLSS30-CPE/Li and Li/sandwich-CPE/Li symmetric cells at ambient temperature. (b) Lithium plating/stripping performance of Li/PVA/PLSS30-CPE/Li and Li/sandwich-CPE/Li symm

etric cells at various current densities (mA cm-2). (c) Magnified view of the Li plating/stripping performance of the cell at a current density of 0.5 mA cm-2. 74Fig 4. 10 Li plating/stripping performance of Li/sandwich-CPE/Li symmetric cell at current densities of 0.2 mA cm-2 at room temperature

. 75Fig 4. 11 SEM image of cycled lithium metal and fresh lithium metal anodes with Li/sandwich-CPE/Li at current density of 0.2 mA cm-2 for 650 h (using TEMIC MERCURY with VTBOX seal transfer box). 76Fig 4. 12 (a) Discharge capacities of the Li/sandwich-CPE/LMO@T-LNCM811 coin cell at various

current rates. (b) Long-term cycling stability measurements of coin cells incorporating the sandwich-CPE and PVA/PLSS30-CPE electrolyte membranes at 0.5C at room temperature. (c, d) Charge/discharge curves of coin cells incorporating the (c) PVA/PLSS30-CPE and (d) sandwich-CPE membranes. (e, f) Cha

nges in AC impedance of coin cells incorporating the (e) PVA/PLSS30-CPE and (f) sandwich-CPE membranes. 78Fig 4. 13 (a) Long-term cycling stability of a pouch cell having dimensions of 5 cm  3 cm and featuring three layers of Li/sandwich-CPE/LMO@T-LNCM811, measured at 0.2C at room temperature. (

b) Corresponding charge/discharge curves of the pouch cell. 80Fig 4. 14 Photographs demonstrating the operation of an all-solid-state pouch lithium-metal battery at room temperature, and its safe performance even after having cut a corner off the battery. 81Fig 4. 15 (a), (b) Charge/discharge

voltage profiles plotted with respect to time for the coin cells (a) Li/PVA/PLSS30-CPE/LMO@T-LNCM811 and (b) Li/sandwich-CPE/LMO@T-LNCM811 tested at a rate of 0.5 C at a fixed temperature of 60 °C. (c), (d) Integrated areas of the heat generation profiles of the coin cells (c) Li/PVA/PLSS30-CPE/LMO@

T-LNCM811 [taken from the third cycle in (a)] and (d) Li/sandwich-CPE/LMO@T-LNCM811 [taken from the third cycle in (b)] measured using an MMC 274 thermal apparatus. 84Fig 5. 1 SEM image of a 20%Al-LLZO/Cellulose/60%Al-LLZO membrane. (a) Top surface view of 20% Al-LLZO layer. (b) Top surface view

of 60% Al-LLZO layer. (c) Cross-sectional view of the 20%Al-LLZO/Cellulose/60%Al-LLZO membrane. (d) EDX mapping spectra of the elements Zr, Al, and La on the cross-section of the 20%Al-LLZO/Cellulose/60%Al-LLZO. 88Fig 5. 2 (a) XRD patterns of Al-LLZO filler and composite electrolyte with various

components. (b) TGA curves of 20%Al-LLZO/Cellulose/60%Al-LLZO and 20%Al-LLZO/Cellulose/20%Al-LLZO membranes. (c) Photograph of 20%Al-LLZO/Cellulose/60%Al-LLZO membrane. 90Fig 5. 3 (a) Ionic conductivity of various composite electrolytes at room temperature. (b) Arrhenius plot of ionic conductivit

y with respect to temperature of the 20%Al-LLZO/Cellulose/60%Al-LLZO membranes. 91Fig 5. 4 (a) Li plating/stripping performance of 20%Al-LLZO/Cellulose/60%Al-LLZO and 20%Al-LLZO/Cellulose/20%Al-LLZO symmetric cells at current density of 0.5 mA cm–2 under room temperature. (b) Mechanical propertie

s of 20%Al-LLZO/Cellulose/60%Al-LLZO and 20%Al-LLZO/Cellulose/20%Al-LLZO. 93Fig 5. 5 (a) LSV plots of the SS/20%Al-LLZO/Cellulose/20%Al-LLZO/Li and SS/20%Al-LLZO/Cellulose/60%Al-LLZO/Li structures at room temperature. (b) DC polarization curve of the Li/20%Al-LLZO/Cellulose/60%Al-LLZO/Li cell at

a polarization voltage of 10 mV; inset: impedance spectra of the symmetric cell before and after polarization. 94Fig 5. 6 (a) Initial AC impedance of pouch cell test at cut off voltage range 2.8-4.3 V; (b) Initial AC impedance of pouch cell test at cut off voltage range 2.8-4.5 V; (c) Charge/disc

harge curves of pouch cell test at cut off voltage range 2.8-4.3 V (d) Charge/discharge curves of of pouch cell test at cut off voltage range 2.8-4.5 V. 96 LIST OF TABLESTable 2. 1 List of chemicals used for study 14Table 2. 2 List of Instruments and Equipment Used for this Study 16Table 3.

1 Experimentally measured parameters and lithium transference numbers (tLi+) calculated at room temperature 46Table 3. 2 Performance data of our cell compared with some previously reported in the literature 56Table 4. 1 Experimentally measured parameters of solid electrolytes and their Li t

ransference numbers (tLi+) calculated at room temperature 72Table 4. 2 Performance data of our LMO@T-LNCM811/sandwich-CPE/Li cell in comparison with those of some previously reported batteries 82Table 5. 1 Weight of pouch cell component 98

丙烯腈寡聚物基複合電解質及其鋰金屬固態電池充放電表現

為了解決Tli1956的問題,作者何長洲 這樣論述:

丙烯腈(AN)為單體,共聚合2-丙烯酸十二烷基酯(DA),利用可逆加成-斷裂鏈轉移法(RAFT)控制分子量,合成之寡聚物,含丙烯腈、丙烯酸十二烷基酯及硫代羰基殘基;此主鏈較短之寡聚物分子量1736 g mol1,約20-30個單元所組成,添加鋰鹽後玻璃轉化溫度(Tg)為39 ℃。複合電解質以聚丙烯腈寡聚物(PAN)為主要導電相,材料組成包括,自製PAN寡聚物,聚偏二氟乙烯(PVdF)長鏈高分子,雙氟磺酼亞胺鋰鹽(LiFSI),石榴石結構鋰鑭鋯鉭氧(LLZTO)粉末。因為控制分子量使PAN寡聚物缺乏機械強度及介電強度,所以添加PVdF以補強電解質這兩方面,研究中我們合成兩種複合電解質,自撐形

式的電解質標膜材示作PAN-FS,另一種電極塗層的電解質膜材標示作PAN-EC。PAN-FS及PAN-EC固態電解質的鋰離子遷移數與電位窗口很相似,鋰離子遷移數0.32-0.35,電位窗口為4.7 V,但兩者的組成不盡相同,因PAN-FS擁有較高含量的PVdF,使其能有充分的機械強度,並能獨立成膜,而PAN-FS的PAN含量低於PAN-EC,PAN-FS的導電性不如PAN-EC。在25 C室溫PAN-FS導電率為3.14×104 S cm1,而PAN-EC則為4.38×104 S cm1。固態鋰離子電池的組合包括,鋰鎳鈷錳三元正極材料 (NMC622)、磷酸鋰鐵材料(LFP)作為陰極

,鋰金屬作為陽極,NMC622電池操作電位窗口為2.8-4.2 V;LFP電池操作電位窗口為2.0-4.0 V,充放電深度100%,Li│PAN-EC│NMC622 電池0.1C放電容量150.1 mAh g1,Li│PAN-FS│NMC622電池0.1C放電容量178.3 mAh g1,並且充放電104個循環,Li│PAN-EC│LFP電池0.1C放電容量146.4 mAh g1,Li│PAN-FS│LFP電池0.1C放電容量169.3 mAh g1;0.2C放電容量達148.9 mAh g1並且充放電115個循環,可以得知使用PAN-FS電解質擁有較高的放電容量,並且使用LFP作

為陰極有較長得循環壽命。PAN寡聚物作為導電相之固態電解質,充放電循環百圈附近就會發生漏電情形,後續添加了PUA寡聚物來改善漏電情形,Li│PANPUA-FS│LFP電池0.1C放電容量163.1 mAh g−1;0.3C放電容量130.2 mAh g−1;0.5C放電容量110.9 mAh g−1,且充放電超過550個循環,得知添加PUA之後改善漏電問題能延長循環壽命。