Geomagic Design X的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

Geomagic Design X的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦成思源等(主編)寫的 Geomagic Design X逆向設計技術 和山東科技大學組織編寫的 3D打印--Geomagic Design X 逆向建模設計實用教程都 可以從中找到所需的評價。

另外網站Geomagic Design X Reviews and Pricing 2023 - SourceForge也說明:Geomagic Design X is an all-round, professional reverse engineering software with a smart combination of history-based CAD with 3D scan data processing, ...

這兩本書分別來自清華大學出版社 和化學工業所出版 。

國立陽明交通大學 牙醫學系 吳政憲所指導 馬潔如的 下頜骨切除術後腓骨游離皮瓣重建術中虛擬手術計劃(VSP)準確性的術後評估:前導性研究 (2020),提出Geomagic Design X關鍵因素是什麼,來自於N/A。

而第二篇論文國立臺灣大學 臨床牙醫學研究所 楊宗傑、林立德所指導 蔡富全的 數位方式製作全口活動義齒咬合面準確度之比較-體外實驗 (2019),提出因為有 CAD/CAM切削、3D列印、列印角度、全口活動義齒、咬合面準確度、精密度、真實度的重點而找出了 Geomagic Design X的解答。

最後網站Geomagic Design X- 3D Scan-to-CAD Software - GoEngineer則補充:Geomagic Design X is a complete Scan-to-CAD solution for various manufacturing and engineering applications. The software has reverse engineering and ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Geomagic Design X,大家也想知道這些:

Geomagic Design X逆向設計技術

為了解決Geomagic Design X的問題,作者成思源等(主編) 這樣論述:

《Geomagic Design X逆向設計技術》作為國內第一本GeomagicDesignX的操作培訓教材,針對逆向建模技術的最新發展趨勢,圍繞GeomagicDesignX軟件的點雲處理、領域分割、草圖繪制及三維建模等相關內容,介紹該軟件的主要功能、使用的思路及方法。每一階段均配有相應的實例操作來說明其應用思路和技巧,提供了詳細的功能介紹與操作視頻,以幫助讀者快速、直觀地領會如何將軟件中的功能運用到實際工作中,盡快地達到學以致用的目的。 本書突出逆向工程技術應用型人才工程素質的培養要求,系統性及實用性強。本書可作為CAD技術人員的自學教材、大專院校CAD專業課程教

材以及CAD技術各級培訓教材。同時,對相關領域的專業工程技術人員和研究人員也具有重要的參考價值。

下頜骨切除術後腓骨游離皮瓣重建術中虛擬手術計劃(VSP)準確性的術後評估:前導性研究

為了解決Geomagic Design X的問題,作者馬潔如 這樣論述:

Introduction: The fibular free flap (FFF) is the gold standard and most frequently used vascularized flap for mandibular defects. In the traditional approach, the fibula segments’ position is dependent on the surgeon’s experience and is assured intraoperatively. The outcome is confirmed postoperati

vely by CT scan. If there are inaccuracies, there is no possibility for adjustment other than having a second surgery. Precise mandibular resection and reconstruction via conventional methods are laborious. Hence, Virtual Surgical Planning (VSP) has been developed and used widely in Oral and Maxillo

facial Surgery. VSP uses surgical simulation instead of depending on manual estimation, thus, reducing human translational errors. Computer-assisted Surgery (CAS) processes include patient evaluation, data acquisition, and VSP phase, modeling phase, surgical phase, and postoperative evaluation phase

. The final phase is not performed in all studies and treatment plans involving the use of CAS.Objectives: The study’s purpose is to evaluate the trueness and precision of VSP in mandibular reconstruction using FFF. Moreover, to compare the results between patients who underwent the reconstruction w

ith the aid of specific fibula from the generic fibula cutting guides.Materials/Methods: Ten patients with malignant and benign tumors who were treated with mandibulectomy and microvascular FFF reconstruction with the aid of VSP/CAS from 2017 to 2020 were evaluated. Preoperatively, head and neck sca

ns were obtained. In some cases, especially females, leg CT scans were requested for the individualized fibula cutting guides planned to be used for donor osteotomy. The diagnostic images were sent to be processed for VSP. The surgical guides were manufactured to be used intraoperatively. In the pat

ients’ follow-ups, postoperative images were requested. These images and some of the preoperative CBCT/CT were saved as DICOM, processed by semi-automatic segmentation, converting the file into STL using 3D Slicer. The preoperative STL, the models used during VSP, and the postoperative STL were impo

rted into Geomagic Control X for postoperative evaluation. The outcome’s deviation from the VSP was assessed. The preoperative and postoperative STLs were measured. This involved 2D analysis by using points, vectors, angles, and planes as well as the use of a 3D color map. The anatomic part of the m

andible with the greatest and most common area of deviation according to the defect classification was also assessed. The mean differences between the preoperative and postoperative measurements were captured. With the total cases, statistical analysis by paired t-tests was carried out. A comparison

was also performed between cases wherein fibula images were obtained through generic or patient-specific means. The ten cases were divided into two groups, the generic and specific fibula. Only the mean, SD, and differences were taken.Results: From the total number of cases, generic fibula guides w

ere used in five patients and five were specific fibula guides. The outcome showed minimal discrepancies from VSP. The angle of affected mandible and the gonion to sagittal plane parameters gave the most accurate outcome among all cases. No statistically significant differences were shown. Only the

intersubcondylar distance gave the greatest mean difference but only 1.56 + 2.58 mm. For the assessment of the two groups, the specific fibula generally showed a lesser amount of change from the VSP while, the generic gave the greatest amount of change which is 2.81 + 6.49 mm in the subcondyle to co

ronal parameter. For the 3D assessment, the specific gave a 90.25 % while the generic gave 84.51% In-tolerances.Conclusion: VSP is reproducible and accurate. It provides an improved clinical outcome, especially in extensive cases, therefore, improves the quality of life of the patients. Generic fibu

la cutting guides tend to be more inexpensive for patients and would provide a shorter processing time during VSP while patient-specific fibula guides would give a more accurate fit in the mandibular reconstruction for better functionality and aesthetics. Incorporating VSP into conventional methods

enhances the decision-making during diagnosis and the execution of the planned management.Keywords: Virtual Surgical Planning, Computer-assisted Surgery, Fibular Free Flap reconstruction, mandibular resection, generic fibula, specific fibula

3D打印--Geomagic Design X 逆向建模設計實用教程

為了解決Geomagic Design X的問題,作者山東科技大學組織編寫 這樣論述:

數位方式製作全口活動義齒咬合面準確度之比較-體外實驗

為了解決Geomagic Design X的問題,作者蔡富全 這樣論述:

實驗目的:本研究目的在檢測數位化技術包含3D列印以及CAD/CAM切削製作全口活動義齒於咬合面(occlusal surface) 準確度(accuracy) 之差異性。材料與方法:將上下顎全口無牙標準模型翻模後製作石膏模型,在上顎以及下顎依照平均值製作咬合蠟堤(occlusal wax rim),作為後續實驗的參考模型。以3D桌掃機 (E3 3D scanner, 3shape, Copenhagen, Denmark)掃描上下顎石膏模型以及咬合蠟堤並以牙科設計軟體(Exocad DentalCAD 2.4 Plovdiv, Exocad GmbH, Darmstadt, Germany)

設計上下顎全口假牙之外型包含咬合面、組織面以及光滑面作為數位假牙設計檔CAD model,後續以CAD/CAM切削 (POLYWAX組)以及3D列印 (NextDent組)方式進行數位全口義齒之製作,3D列印組透過改變列印角度(build angle) 90度以及45度以及在石膏模型上進行後固化(post-curing) 分成四組,每組上下顎各製作10個 (共計90個)。義齒咬合面再現性之測試方式為:1. 掃描各組之義齒咬合面並與數位義齒設計檔CAD model影像疊合分析咬合面 (cameo surface)。2. 使用游標尺測量以及數位軟體距離測量方式測量義齒咬合面參考點之間距離,測量距離

包含:大臼齒間寬度(intermolar width),犬齒間寬度(intercanine width),前後距離(anterior posterior distance), 垂直距離(vertical distance),並計算與數位義齒設計檔CAD model之間的差距。統計方式使用以Kruskal-Wallis Test先進行分析,並以Tukey法進行事後比較檢定 (post-hoc test) ,有意義水準設於p≤0.05。實驗結果:根據數位影像疊合方式檢測的結果,不論上下顎均顯示:咬合面的再現度在十個參考位置的比較來看,CAD/CAM切削相較於3D列印方式顯示出較高的準確度(accu

racy)(變化量0.0115 ~ 0.0719mm),在3D列印方式的各組當中,改變列印角度顯著影響尺寸準確度,透過在石膏模型上進行後固化可以降低後固化時造成的收縮,進而提高咬合準確度。根據游標尺測量以及數位軟體距離測量方式測量義齒咬合面參考點之間距離,並計算與數位義齒設計檔CAD model之間的差距,結果顯示在3D列印方式的各組當中,改變列印角度顯著影響尺寸準確度,透過在石膏模型上進行後固化可以降低後固化時造成的收縮,進而提高咬合面準確度。結論:在本實驗有限的條件下,對於全口義齒在咬合面再現度檢測的結果,使用游標卡尺以及數位測量方式測量參考點之間距離大小,CAD/CAM切削方式不論是在上

顎或下顎,產生的距離差都小於3D列印方式。3D列印方式在上顎以及下顎的表現,改變列印角度以及後處理在模型上進行後固化,可以降低各參考點之間距離誤差。使用數位影像疊合方式檢測下,CAD/CAM切削方式製作義齒在咬合面有較高的真實度,而3D列印方式改變列印角度以及後處理在模型上進行後固化可以提高咬合面準確度。