GPS L1 bandwidth的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

國立高雄師範大學 電子工程學系 羅有龍所指導 雷宗諺的 具製程電壓溫度變異補償應用於窄頻物聯網系統之低功耗鎖相迴路 (2021),提出GPS L1 bandwidth關鍵因素是什麼,來自於窄頻物聯網系統之低功耗鎖相迴路。

而第二篇論文國立交通大學 機械工程系所 陳宗麟所指導 侯昱任的 四軸混合式火箭引擎平台控制系統之開發 (2020),提出因為有 控制系統、火箭引擎、懸浮平台的重點而找出了 GPS L1 bandwidth的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了GPS L1 bandwidth,大家也想知道這些:

具製程電壓溫度變異補償應用於窄頻物聯網系統之低功耗鎖相迴路

為了解決GPS L1 bandwidth的問題,作者雷宗諺 這樣論述:

鎖相迴路(PLL)[1]-[3]廣泛應用在各式的通訊系統中,例如應用在醫療通訊(MICS)、無線通訊GSM、GPS、WCDMA以及應用在無線通訊系統上做為切換頻段的頻率合成器等等(Frequency Synthesizer)。物聯網(Internet of Things, IoT)的應用是已經成熟的技術,然而窄頻物聯網(Narrow Band Internet of Things, NB-IoT)在近期內逐漸成熟,因此本論文提出類比式鎖相迴路(PLL)的設計,其頻段頻率範圍在700MHz~960MHz,並符合窄頻物聯網的頻段應用。第三章為混合訊號式鎖相迴路(Mixed-Signal Phas

e Lock Loop, MSPLL)的設計,電路中採用改良後的新式充電泵,利用開關切換的方式,減少電流源處不必要的消耗,使充電泵達到低功號的目的,並增加兩個MOS使電流能箝制於飽和區,使充電汞最佳的操作區域更大。電壓控制振盪器則是利用回授方式改變KVCO,並加上控制Mux去針對溫度變異的補償。第四章為混合訊號式鎖相迴路的佈局,因為是使用類比鎖相迴路的架構,除了比對預設的規格和佈局後的結果是否一致,還要讓壓控振盪器在佈局模擬結果產生振盪,否則壓控振盪器設計的在好,佈局模擬結果不會振盪,只會導致整個鎖相迴路動作失敗。本電路採用UMC 0.18μm 1P6M CMOS製程來實現電路,其標準電壓為1

.2V,當操作電壓為1.2V時,此鎖相迴路操作頻率為700MHz到960MHz,總頻寬為260MHz。整體晶片面積為1.500×1.500mm2,核心部分(含濾波器之電容、電阻)面積為0.204mm2,當操作頻率在800MHz時,峰對峰值抖動量為18.9ps,功率消耗約為3.48mW。

四軸混合式火箭引擎平台控制系統之開發

為了解決GPS L1 bandwidth的問題,作者侯昱任 這樣論述:

本研究與交大前瞻火箭研究中心合作,開發以火箭引擎為動力之飛行平台,與一般 火箭不同,該平台的目標是做短距離的低速飛行,並執行安全的起飛和降落 使平台可重複性使用。此平台系統主要 可分為推進系統與導航控制系統,本論文主旨在導航與控制系統的開發。本論文設計了多種飛行控制策略,每種方法都由詳細的控制器推導再到 模擬驗證。模擬中又以實務上會遇到的各種模擬條件,比較出了各個控制法則的優缺點。控制方法包含了以古典控制理論為基礎的線性架構,還有 引入積分控制的逆向步進法,以及強健控制領域的非線性 ????∞ 控制法。 除此之外,本研究因其自身結構的重量,有較低的推重比(thrust-to-weight r

atio),因此在設計控制器時做了仔細的頻寬分配,使其在達 成控制目標的同時不會使推力飽和。本論文也提出了一套適合應用在短距離的感測器融合系統,此系統已經過實際測試,可估測ENU座標下的位置與速度,亦可獲得載體本身的姿態。其特色是藉由 GNSS-RTK接收器的輔助,使定位精度能長時間維持在 0.2 m 以內。在姿態測試方面不僅止於一般文獻的單軸測試,本文使用了三個框架建構而成的三軸旋轉平台,來驗證載體在多軸轉 動時的姿態估測。火箭引擎飛行平台之子系統較一般無人機多,因此除了控制器與感測融合系統的程式,本論文還囊括了地面觀測站(ground station)軟體與各個通訊子程式。最後基於本研究實

際飛行 測試 的成本與安全考量,吾人實行了系統的硬體在環測試(hard-ware in the loop),驗證了整體控制系統 已達成熟階段。