GLONASS 定位系統的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

GLONASS 定位系統的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦寫的 GPS/GNSS原理與應用(第3版) 和安守中 的 GPS定位原理及應用(第四版)都 可以從中找到所需的評價。

這兩本書分別來自電子工業 和全華圖書所出版 。

國防大學 戰略研究所 林穎佑所指導 陳龍豪的 北斗系列衛星導航系統之發展與應用 (2021),提出GLONASS 定位系統關鍵因素是什麼,來自於中共航太發展、北斗系列衛星導航系統、軍事戰略、外交政策、軍民融合。

而第二篇論文國立臺灣大學 應用力學研究所 王立昇所指導 田凱元的 長短期記憶深度學習類神經網路於預測電離層垂直總電子含量之應用 (2021),提出因為有 長短期記憶、類神經網路、電離層、垂直總電子含量、單頻單點定位的重點而找出了 GLONASS 定位系統的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了GLONASS 定位系統,大家也想知道這些:

GPS/GNSS原理與應用(第3版)

為了解決GLONASS 定位系統的問題,作者 這樣論述:

本書詳細介紹了GPS、GLONASS、BeiDou、Galileo、QZSS和NavIC系統的**資訊,涵蓋了各個系統的星座配置、衛星、地面控制系統和使用者設備,提供了詳細的衛星信號特徵。   本書包括GNSS簡介、衛星導航基礎、全球衛星導航系統、GLONASS、伽利略系統、北斗衛星導航系統、區域衛星導航系統、GNSS接收機、GNSS擾亂、GNSS誤差、獨立GNSS的性能、差分GNSS和精密單點定位、GNSS與其他感測器的組合及網路輔助、GNSS市場與應用。   本書可作為高校相關專業學生學習GNSS基本知識的教材,也可供業內相關技術人員參考。 Elliott D. Kapl

an,美國麻塞諸塞州貝德福德MITRE公司首席工程師,美國紐約理工學院電氣工程理學學士,美國東北大學電氣工程理學碩士。自1986年以來,Kaplan先生一直積極參與GPS相關的政府計畫。他目前正在支持美國空軍研究實驗室航太飛行局和GPS理事會的活動,其中包括AFRL導航技術衛星3(NTS-3)的開發。 寇豔紅,博士,北京航空航太大學電子資訊工程學院副教授。長期從事衛星導航、通信與信號處理領域的科研和教學工作,擔任CSNC、ION GNSS/ITM、CPGPS、MMT等國際會議分會主席,中國第二代衛星導航系統重大專項專家組專家。已主持完成科研專案30余項,發表論文百餘篇、合著1部、譯著2部、標

準2部,獲授權發明專利十余項,獲省部級科技進步獎6項、校優秀教學成果獎2項。 第1章 引言 1 1.1 簡介 1 1.2 GNSS概述 1 1.3 全球定位系統 2 1.4 全球導航衛星系統 3 1.5 伽利略系統 4 1.6 北斗系統 5 1.7 區域系統 6 1.7.1 准天頂衛星系統 6 1.7.2 印度導航星座(NavIC) 7 1.8 增強系統 7 1.9 市場與應用 8 1.10 本書的結構 9 參考文獻 12 第2章 衛星導航基礎 13 2.1 利用到達時間測量值測距的概念 13 2.1.1 二維定位 13 2.1.2 衛星測距碼定位原理 15 2.2 參考坐

標系 17 2.2.1 地心慣性坐標系 17 2.2.2 地心地固坐標系 17 2.2.3 當地切平面(當地地平)坐標系 19 2.2.4 本體框架坐標系 20 2.2.5 大地(橢球)座標 21 2.2.6 高度座標與大地水準面 22 2.2.7 國際地球參考框架 23 2.3 衛星軌道基礎 24 2.3.1 軌道力學 24 2.3.2 星座設計 28 2.4 GNSS信號 33 2.4.1 射頻載波 33 2.4.2 調製 33 2.4.3 次級碼 36 2.4.4 複用技術 36 2.4.5 信號模型與特性 37 2.5 利用測距碼確定位置 41 2.5.1 確定衛星到用戶的距離 41

2.5.2 用戶位置的計算 43 2.6 求解使用者的速度 45 2.7 頻率源、時間和GNSS 47 2.7.1 頻率源 47 2.7.2 時間和GNSS 53 參考文獻 53 第3章 全球衛星導航系統 55 3.1 概述 55 3.1.1 空間段概述 55 3.1.2 控制段概述 55 3.1.3 用戶段概述 56 3.2 空間段描述 56 3.2.1 GPS衛星星座描述 56 3.2.2 星座設計指南 58 3.2.3 分階段發展的空間段 60 3.3 控制段描述 75 3.3.1 OCS的當前配置 76 3.3.2 OCS的進化 86 3.3.3 OCS未來計畫的升級 88 3.4

用戶段 89 3.4.1 GNSS接收機的特性 89 3.5 GPS大地測量和時標 93 3.5.1 大地測量 93 3.5.2 時間系統 94 3.6 服務 94 3.6.1 SPS性能標準 95 3.6.2 PPS性能標準 97 3.7 GPS信號 99 3.7.1 傳統信號 99 3.7.2 現代化信號 110 3.7.3 民用導航(CNAV)和CNAV-2導航數據 116 3.8 GPS星曆參數和衛星位置計算 120 3.8.1 傳統星曆參數 120 3.8.2 CNAV和CNAV-2星曆參數 121 參考文獻 123 第4章 全球導航衛星系統 126 4.1 簡介 126 4.2

空間段 127 4.2.1 星座 127 4.2.2 衛星 128 4.3 地面段 131 4.3.1 系統控制中心 131 4.3.2 中央同步器 131 4.3.3 遙測、跟蹤和指揮 132 4.3.4 鐳射測距站 132 4.4 GLONASS使用者設備 132 4.5 大地測量學與時間系統 133 4.5.1 大地測量參考坐標系 133 4.5.2 GLONASS時間 134 4.6 導航服務 135 4.7 導航信號 135 4.7.1 FDMA導航信號 135 4.7.2 頻率 136 4.7.3 調製 137 4.7.4 編碼特性 137 4.7.5 GLONASS P碼 138

4.7.6 導航電文 138 4.7.7 C/A碼導航電文 139 4.7.8 P碼導航電文 139 4.7.9 CDMA導航信號 140 致謝 142 參考文獻 142 第5章 伽利略系統 144 5.1 專案概述和目標 144 5.2 伽利略系統的實現 145 5.3 伽利略服務 145 5.3.1 伽利略開放服務 145 5.3.2 公共監管服務 146 5.3.3 商業服務 146 5.3.4 搜索與救援服務 146 5.3.5 生命安全服務 146 5.4 系統概述 146 5.4.1 地面任務段 149 5.4.2 地面控制段 152 5.4.3 空間段 153 5.4.4 運

載火箭 158 5.5 伽利略信號特徵 159 5.5.1 伽利略擴頻碼和序列 161 5.5.2 導航電文結構 162 5.5.3 正向糾錯編碼和塊交織 163 5.6 互通性 164 5.6.1 伽利略大地參考坐標系 164 5.6.2 時間參考坐標系 164 5.7 伽利略搜索和救援任務 165 5.7.1 SAR/Galileo服務描述 165 5.7.2 歐洲SAR/Galileo覆蓋區域和MEOSAR環境 166 5.7.3 SAR/Galileo系統架構 168 5.7.4 SAR頻率計畫 170 5.8 伽利略系統性能 172 5.8.1 授時性能 172 5.8.2 測距性能

173 5.8.3 定位性能 176 5.8.4 最終運營能力的預期性能 177 5.9 系統部署完成FOC的時間 178 5.10 FOC之後系統伽利略的發展 179 參考文獻 179 第6章 北斗衛星導航系統 181 6.1 概述 181 6.1.1 北斗衛星導航系統簡介 181 6.1.2 北斗的發展歷程 182 6.1.3 BDS的特點 185 6.2 BDS的空間段 186 6.2.1 BDS星座 186 6.2.2 BDS衛星 190 6.3 BDS控制段 191 6.3.1 BDS控制段的組成 191 6.3.2 BDS控制段的運行 192 6.4 大地測量參考系和時間參考系

192 6.4.1 BDS坐標系 192 6.4.2 BDS時間系統 193 6.5 BDS服務 193 6.5.1 BDS服務類型 193 6.5.2 BDS RDSS服務 194 6.5.3 BDS RNSS服務 195 6.5.4 BDS SBAS服務 197 6.6 BDS信號 197 6.6.1 RDSS信號 197 6.6.2 BDS區域系統的RNSS信號 198 6.6.3 BDS全球系統的RNSS信號 205 參考文獻 207 第7章 區域衛星導航系統 209 7.1 准天頂衛星系統 209 7.1.1 概述 209 7.1.2 空間段 209 7.1.3 控制段 211

7.1.4 大地測量和時間系統 213 7.1.5 服務 213 7.1.6 信號 214 7.2 印度導航星座 217 7.2.1 概述 217 7.2.2 空間段 218 7.2.3 NavIC控制段 219 7.2.4 大地測量和時間系統 221 7.2.5 導航服務 223 7.2.6 信號 223 7.2.7 應用和NavIC使用者設備 224 參考文獻 225 第8章 GNSS接收機 228 8.1 概述 228 8.1.1 天線單元和電子設備 229 8.1.2 前端 230 8.1.3 數位記憶體(緩衝器和多工器)和數位接收機通道 230 8.1.4 接收機控制和處理、導航控

制和處理 230 8.1.5 參考振盪器和頻率合成器 230 8.1.6 使用者和/或外部介面 231 8.1.7 備用接收機控制介面 231 8.1.8 電源 231 8.1.9 小結 231 8.2 天線 231 8.2.1 所需屬性 232 8.2.2 天線設計 232 8.2.3 軸比 234 8.2.4 電壓駐波比 236 8.2.5 天線雜訊 237 8.2.6 無源天線 238 8.2.7 有源天線 238 8.2.8 智慧天線 238 8.2.9 軍用天線 239 8.3 前端 239 8.3.1 功能描述 240 8.3.2 增益 241 8.3.3 下變頻方案 242 8.

3.4 輸出到ADC 242 8.3.5 ADC、數位增益控制和類比頻率合成器功能 243 8.3.6 ADC實現損耗及設計示例 244 8.3.7 ADC取樣速率與抗混疊 247 8.3.8 ADC欠採樣 249 8.3.9 雜訊係數 251 8.3.10 動態範圍、態勢感知及對雜訊係數的影響 251 8.3.11 與GLONASS FDMA信號的相容性 253 8.4 數位通道 254 8.4.1 快速功能 254 8.4.2 慢速功能 267 8.4.3 搜索功能 271 8.5 捕獲 286 8.5.1 單次試驗檢測器 286 8.5.2 唐檢測器 289 8.5.3 N中取M檢測器

291 8.5.4 組合唐與N中取M檢測器 293 8.5.5 基於FFT的技術 293 8.5.6 GPS軍用信號直捕 295 8.5.7 微調多普勒與峰值碼搜索 301 8.6 載波跟蹤 301 8.6.1 載波環鑒別器 302 8.7 碼跟蹤 306 8.7.1 碼環鑒別器 306 8.7.2 BPSK-R信號 308 8.7.3 BOC信號 310 8.7.4 GPS P(Y)碼無碼/半無碼處理 311 8.8 環路濾波器 311 8.8.1 PLL濾波器設計 313 8.8.2 FLL濾波器設計 314 8.8.3 FLL輔助PLL濾波器設計 314 8.8.4 DLL濾波器設計 3

15 8.8.5 穩定性 315 8.9 測量誤差和跟蹤門限 323 8.9.1 PLL跟蹤環測量誤差 323 8.9.2 PLL熱雜訊 323 8.9.3 由振動引起的振盪器相位雜訊 325 8.9.4 艾倫偏差振盪器相位雜訊 326 8.9.5 動態應力誤差 327 8.9.6 參考振盪器加速度應力誤差 327 8.9.7 總PLL跟蹤環測量誤差與門限 328 8.9.8 FLL跟蹤環測量誤差 330 8.9.9 碼跟蹤環測量誤差 331 8.9.10 BOC碼跟蹤環測量誤差 336 8.10 偽距、?偽距和積分多普勒的形成 337 8.10.1 偽距 338 8.10.2 偽距 347

8.10.3 積分多普勒 348 8.10.4 偽距載波平滑 349 8.11 接收機的初始工作順序 350 8.12 數據解調 352 8.12.1 傳統GPS信號解調 353 8.12.2 其他GNSS信號的資料解調 356 8.12.3 資料誤位元速率比較 357 8.13 特殊的基帶功能 358 8.13.1 信噪功率比估計 358 8.13.2 鎖定檢測器 360 8.13.3 周跳編輯 365 參考文獻 371 第9章 GNSS擾亂 374 9.1 概述 374 9.2 干擾 374 9.2.1 干擾類型與干擾源 374 9.2.2 影響 377 9.2.3 干擾抑制 397 9

.3 電離層閃爍 400 9.3.1 基礎物理 400 9.3.2 幅度衰落與相位擾動 400 9.3.3 對接收機的影響 401 9.3.4 抑制 402 9.4 信號阻塞 402 9.4.1 植被 402 9.4.2 地形 403 9.4.3 人造建築物 406 9.5 多徑 407 9.5.1 多徑特性及模型 408 9.5.2 多徑對接收機性能的影響 410 9.5.3 多徑抑制 416 參考文獻 417 第10章 GNSS誤差 420 10.1 簡介 420 10.2 測量誤差 420 10.2.1 衛星鐘誤差 421 10.2.2 星曆誤差 424 10.2.3 相對論效應 42

7 10.2.4 大氣效應 429 10.2.5 接收機雜訊和解析度 440 10.2.6 多徑與遮蔽效應 440 10.2.7 硬體偏差誤差 441 10.3 偽距誤差預算 444 參考文獻 444 第11章 獨立GNSS的性能 446 11.1 簡介 446 11.2 位置、速度和時間估計的概念 446 11.2.1 GNSS中的衛星幾何分佈和精度因數 446 11.2.2 GNSS星座的DOP特性 450 11.2.3 精度指標 453 11.2.4 加權最小二乘 456 11.2.5 其他狀態變數 456 11.2.6 卡爾曼濾波 457 11.3 GNSS可用性 458 11.3.

1 使用24顆衛星的標稱GPS星座預測GPS可用性 458 11.3.2 衛星故障對GPS可用性的影響 459 11.4 完好性 465 11.4.1 關於危險程度的討論 465 11.4.2 完好性異常的來源 465 11.4.3 完好性改進技術 467 11.5 連續性 475 11.5.1 GPS 475 11.5.2 GLONASS 476 11.5.3 伽利略 476 11.5.4 北斗 476 參考文獻 476 第12章 差分GNSS和精密單點定位 478 12.1 簡介 478 12.2 基於碼的DGNSS 479 12.2.1 局域DGNSS 479 12.2.2 區域DGN

SS 482 12.2.3 廣域DGNSS 482 12.3 基於載波的DGNSS 484 12.3.1 基線的即時精準確定 484 12.3.2 靜態應用 497 12.3.3 機載應用 498 12.3.4 姿態確定 500 12.4 精密單點定位 501 12.4.1 傳統PPP 501 12.4.2 具有模糊度解算的PPP 503 12.5 RTCM SC-104電文格式 506 12.5.1 2.3版 506 12.5.2 3.3版 508 12.6 DGNSS和PPP示例 509 12.6.1 基於碼的DGNSS 509 12.6.2 基於載波 524 12.6.3 PPP 527

參考文獻 528 第13章 GNSS與其他感測器的組合及網路輔助 531 13.1 概述 531 13.2 GNSS/慣性組合 532 13.2.1 GNSS接收機性能問題 532 13.2.2 慣性導航系統綜述 534 13.2.3 卡爾曼濾波器作為系統組合器 539 13.2.4 GNSSI組合方法 542 13.2.5 典型GPS/INS卡爾曼濾波器設計 544 13.2.6 實現卡爾曼濾波器的注意事項 548 13.2.7 可控接收模式天線的組合 548 13.2.8 跟蹤環路的慣性輔助 550 13.3 陸地車輛系統中的感測器組合 555 13.3.1 引言 555 13.3.2

陸地車輛增強感測器 558 13.3.3 陸地車輛感測器組合 571 13.4 A-GNSS:基於網路的捕獲和定位輔助 576 13.4.1 輔助GNSS的歷史 578 13.4.2 應急回應系統要求和指南 579 13.4.3 輔助資料對捕獲時間的影響 584 13.4.4 無線設備中的GNSS接收機集成 588 13.4.5 網路輔助的來源 590 13.5 移動設備中的混合定位 601 13.5.1 引言 601 13.5.2 移動設備增強感測器 602 13.5.3 移動設備感測器組合 607 參考文獻 609 第14章 GNSS市場與應用 613 14.1 GNSS:基於支援技術

的複雜市場 613 14.1.1 簡介 613 14.1.2 市場挑戰的定義 614 14.1.3 GNSS市場的預測 615 14.1.4 市場隨時間的變化 616 14.1.5 市場範圍和細分 617 14.1.6 政策依賴性 617 14.1.7 GNSS市場的特點 617 14.1.8 銷售預測 618 14.1.9 市場局限性、競爭體系和政策 618 14.2 GNSS的民用應用 619 14.2.1 基於位置的服務 619 14.2.2 道路 620 14.2.3 GNSS在測繪、製圖和地理資訊系統中的應用 621 14.2.4 農業 621 14.2.5 海洋 622 14.2.

6 航空 623 14.2.7 無人駕駛飛行器和無人機 624 14.2.8 鐵路 625 14.2.9 授時與同步 625 14.2.10 空間應用 625 14.2.11 GNSS室內挑戰 626 14.3 政府及軍事應用 626 14.3.1 軍事使用者設備:航空、船舶和陸地 626 14.3.2 自主接收機:智慧型武器 627 14.4 結論 628 參考文獻 628 附錄A 最小二乘和加權最小二乘估計 629 參考文獻 629 附錄B 頻率源穩定度測量 630 B.1 引言 630 B.2 頻率標準穩定度 630 B.3 穩定度的測量 631 B.3.1 艾倫方差 631 B.3.

2 哈達瑪方差 631 參考文獻 632 附錄C 自由空間傳播損耗 633 C.1 簡介 633 C.2 自由空間傳播損耗 633 C.3 功率譜密度與功率通量密度的轉換 635 參考文獻 635

GLONASS 定位系統進入發燒排行的影片

"Fenix 6 Pro Solar、Instinct Solar Tactical Edition評測
現在很多智能手錶也能記錄跑速、心率,但跑友們還是比較傾向用主打運動功能的品牌,運動手錶和一般智能手錶有何分別呢?今次Gadget Guy就有兩款Garmin手錶開箱,測試運動手錶的功能,分別是Fenix 6 Pro Solar和Instinct Solar Tactical Edition。


太陽能加持長氣電量
Garmin Solar系列已經推出過9款產品,各有不同定位,這次就選了高價的Fenix 6 Pro Solar和入門級別的Instinct Solar Tactical Edition開箱。顧名思義Solar系列採用太陽能鏡面充電技術,解決智能手錶食電、用一兩天就要充電的通病。
Fenix 6 Pro Solar配合太陽能充電能提供14天的電池續航力,開啟省電模式甚至能超過48天。採用單色屏幕的Instinct Solar Tactical Edition則更誇張,一般模式電量可用24天,開啟省電模式的話,在日照亮度達50,000lux的環境下3小時就可充夠電,理論上可無限使用。


運動模式更專門
兩隻手錶都有比一般智能手錶更專業的運動模式,Fenix 6 Pro Solar有多達30個運動模式;Instinct Solar也有25種。跑步、游水、行山、滑雪,甚至划艇、跳傘都有。記錄的項目十分仔細,例如划艇模式,可以記錄划槳的速度、次數、划距等等。


比較多人用的「跑步」模式也十分好用。除了記錄距離、跑速、心率,記者最喜歡就是它的自動規劃跑步路線功能,配合智能電話的「Garmin Connect」App,選好距離,在地圖上點選身處位置,適合的跑步路線就會自動出現。
對於成績有要求的跑手,Fenix 6 Pro Solar的PacePro功能更是訓練和比賽的好拍檔。預先用App規劃好賽道,再輸入目標時間,PacePro會自動設定好配速策略,提你加速或者減速。跑手甚至可以調節上下坡的強度:你想上坡時慢一點,調低上坡強度,PacePro就會指示你在平地要快一點,有助提升跑手比賽的表現,不過入門級的Instinct Solar則沒有PacePro功能了。


此外,戶外活動愛好者和跑手也很重視GPS功能,兩隻手錶都支援3種衛星定位系統:GPS、GLONASS及Galileo 。就算沒有配對電話,只戴着手錶出街跑步,都能記低位置路線、速度等數據。
軍用防護功能
除了運動功能,防護方面亦比一般智能手錶全面。兩隻手錶都達到美軍810防護等級,能抵禦-20℃至45℃極端溫差、太陽輻射、沙塵、衝擊等情況;防水更達100米,甚至在水中都可以偵測到心率。可能你不會去到極地探險,但日常應用感覺也會比一般智能手錶硬淨,不會那麼容易刮花錶面。


可駁電話使用智能功能
兩隻運動手錶都沒有輕觸屏幕,主要以實體按鍵操作,運動途中比較可靠,但就一樣可以用「Garmin Connect」App配對智能電話,會記錄低心率、步數等健康數據,兩隻手錶都能接收和查閱電話的通知,不過就要注意英文版看不到中文字的問題。
Fenix 6 Pro Solar更加比一般的智能手錶「獨立」。它配對電話後可以使用「Garmin IQ」下載手錶App,而這些App都能夠在手錶獨立運作。例如安裝了Spotify,完成同步歌單的步驟,就可以單獨用Fenix 6 Pro Solar接駁藍牙耳機,斷開電話連接、不帶電話出街都可照樣聽歌跑步。


綜合電量和專業的運動功能,雖然可能沒有一般智能手錶App玩,但一隻專業的運動手錶的確能幫到運動員挑戰更好的成績。
記者:司徒港燊
攝影:林正言
協力:梁志穎
編輯:鄒仲安
Produced By:Fruity Nutty Studio
-----------------------------
支持蘋果深度報道,深入社區,踢爆權貴,即Like蘋果專題及調查組FB專頁!"

果籽 :http://as.appledaily.com
籽想旅行:http://travelseed.hk
健康蘋台: http://applehealth.com.hk
動物蘋台: http://applepetform.com

相關影片:
【我是南丫島人】23歲仔獲cafe免費借位擺一人咖啡檔 $6,000租住350呎村屋:愛這裏互助關係 (果籽 Apple Daily) (https://youtu.be/XSugNPyaXFQ)
【尋找以色列 - 足本版】日日炮彈聲送飯 港夫婦耶路撒冷開麵店女兒當兵「呢度係全世界最安全地方!」 (果籽 Apple Daily) (https://youtu.be/cyfMJ1OOPKY)
【這夜給惡人基一封信】大佬茅躉華日夜思念 回憶從8歲開始:兄弟有今生沒來世 (壹週刊 Next) (https://youtu.be/t06qjQbRIpY)
【癌妻疑腫瘤增大再入院】林子博心力交瘁 感激汪阿姐報紙包錢相贈渡難關(壹週刊 Next)(https://youtu.be/gk83T58fTIs)
【太子餃子店】新移民唔怕蝕底自薦包餃子 粗重功夫一腳踢 老闆刮目相看邀開店:呢個女人唔係女人(飲食男女 Apple Daily) https://youtu.be/7CUTg7LXQ4M)
【街市尋寶】慈雲山街市 二百幾萬機器鮮製$24午餐肉 肉彈味濃無添加日賣500份 (飲食男女 Apple Daily) (https://youtu.be/rTrYPzECHI0)
【娛樂人物】情願市民留家唔好出街聚餐 鄧一君兩麵舖執笠蝕200萬 (蘋果日報 Apple Daily) (https://youtu.be/e3agbTOdfoY)
【頭條動新聞】孕婦被拉跌 社會關注度不及細So與美斯《頭條動新聞》Ep.6 (蘋果日報 Apple Daily) (https://youtu.be/4MaqWS-XFEc)


#果籽 #運動手錶 #Garmin Solar #太陽能 #Fenix 6 Pro Solar #Instinct Solar Tactical Edition #StayHome #WithMe #跟我一樣 #宅在家

北斗系列衛星導航系統之發展與應用

為了解決GLONASS 定位系統的問題,作者陳龍豪 這樣論述:

本研究聚焦於北斗系列衛星導航系統發展與應用情形,且結合中共當前運用概況為例證,瞭解現今北斗系列衛星導航系統為中共所帶來的利益與全球布局所造成的影響。綜觀歷史,在近代科技競爭中,掌握航太科技就意味著掌握勝算,衛星導航系統強弱則是航太科技的制高點。所以,未來強國競爭中,取得「制天權」將視同掌控強權一般,都將對國家軍事戰略、外交政策、軍民融合與民生經濟產生關鍵的影響。冷戰結束後,中共提出「打贏高科技條件下局部戰爭」的軍事準則,當時中共的軍事思維已具有制天權的宏觀,並投入大量的資源和人力,建立以太空為主導的軍事戰力。創造出中共所自主研製的北斗系列衛星導航系統。目前能力已覆蓋全球範圍。本文並將評估中共

「北斗系列衛星導航系統」現今國內和全球當前發展與應用概況;同時,對我國家安全可能造成的威脅,以及提出相關因應之道。關鍵詞:中共航太發展、北斗系列衛星導航系統、軍事戰略、外交政策、軍民融合

GPS定位原理及應用(第四版)

為了解決GLONASS 定位系統的問題,作者安守中  這樣論述:

  這是一本向知識份子介紹GPS的書。為了讓每個人都瞭解GPS的系統,本書盡量避開了艱澀的科學名詞和繁雜的運算公式,期望能經由簡單的文字敘述,讓讀者理解這門新興的科技。知識是社會的公器,將新科技知識介紹給讀者是知識份子的責任。以淺顯易懂的科普書籍介紹新科技,可以繞過人們對艱深新知的排斥,滿足人們的好奇心和求知慾。   本書分成系統篇、原理篇、應用篇、和未來篇等四篇。先介紹GPS衛星和地面監控系統的結構,再介紹衛星的三度空間定位原理,然後是使用端的組件、設備、和軍事與民間應用的狀況,最後說明此系統的未來規劃和發展。這四篇沒有前後次序關係,讀者可以選擇自己有興趣的部份開始。G

PS如同電視、電話、鐘表、手機一樣,將影響每一個人的日常生活。GPS的應用是一片待開發的領域,應用篇中介紹了許多GPS的應用實例。讀者可以在這些應用實例中,體會GPS的特性和功能。   本書內容參考了世界各國最新的GPS研發資料,加入大量的圖例和照片,兼顧了一本科普書籍該有的知識性和趣味性。讀者可以在輕鬆的心情下獲得GPS的普通知識,對有興趣進一步研究的讀者,也列出一些網站供為參考。 本書特色   1.本書以淺顯易懂的文字介紹新興的GPS定位科技。   2.除了GPS衛星系統構成及三度空間空間定位原理之外,另以大量的民間及軍方應用實例,說明它在世界各地的最新發展現況。   3.其中也

介紹了差分DGPS、俄羅斯的GLONASS、歐盟的Galileo及發展中的中共北斗衛星定位系統相關知識。   4.高中以上程度的讀者均能輕鬆瞭解本書各章節的內容。

長短期記憶深度學習類神經網路於預測電離層垂直總電子含量之應用

為了解決GLONASS 定位系統的問題,作者田凱元 這樣論述:

隨著行動裝置的普及與科技的快速發展,使用者對於全球衛星定位系統(Global Positioning System, GPS)之定位精度要求也日趨提升,對於目前使用普及之單頻衛星訊號接收機而言,電離層誤差為影響定位效果最重要的誤差項之一,故使用準確且即時的垂直總電子含量(vertical total electron content, VTEC)計算電離層誤差尤為重要。 本研究使用類神經網路預測的方法以期求得準確之VTEC數值,首先試驗了陽明山地區與北京地區之VTEC、太陽黑子數、F10.7參數、ap指數、Dst指數以及行星際磁場南向分量等組成之較佳輸入參數組合,發現具不同電離層結構之

兩地區其較佳輸入參數組合亦會不盡相同。本研究亦比較了單向LSTM最後輸出模型、單向LSTM序列輸出模型、雙向LSTM最後輸出模型、雙向LSTM序列輸出模型以及BPNN模型之VTEC預測效能,發現雙向LSTM序列輸出模型具有最佳之預測表現,最後將陽明山地區和北京地區之雙向LSTM序列輸出模型與傳統BPNN模型、C1PG一日預測電離層地圖、IRI-2016模型進行預測效能比較,並使用CODG電離層地圖當作參考標準,於2016年測試資料發現雙向LSTM序列輸出模型之預測表現最佳。 為檢驗預測結果之效能,本研究之定位實驗先計算出陽明山測站天頂穿刺點位置類神經網路預測值與C1PG於相同穿刺點位置預

測值之偏差值,再於C1PG電離層地圖各衛星穿刺點位置同加上此一偏差值,代入定位演算法進行定位後,於平面定位有明顯的精度改善效果。