Carbide Create的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

國立清華大學 材料科學工程學系 徐文光所指導 曾兆綦的 以碳氫化合物熱裂解法製備碳包覆奈米高熵合金顆粒 (2021),提出Carbide Create關鍵因素是什麼,來自於奈米碳管、高熵合金奈米顆粒、碳氫化合物熱裂解法。

而第二篇論文國立陽明交通大學 國際半導體產業學院 羅友杰、Somnath Bhowmick所指導 施柏安的 材料的界面與表面對相變化與塑性變形的理論研究 (2021),提出因為有 分子動力學模擬、相位變換、界面形貌、面心立方/體心立方、變形行為、奈米線的重點而找出了 Carbide Create的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Carbide Create,大家也想知道這些:

Carbide Create進入發燒排行的影片

อยากเล่นใช่มะ เข้ามาเลย
ลิ้งค์: https://bc.exe.in.th/landing/obt/
สมัครเกมได้ที่นี้ : https://accounts.exe.in.th/create/2

แฟนเพจOPZTV ไว้ร่วมกิจกรรม
https://www.facebook.com/fanpageopztv

Facebook ส่วนตัว
https://www.facebook.com/BoomOPZTV

สเป็คคอมพิวเตอร์
CPU : INTEL Core i7-6700K 4.0Ghz
Motherboard : MSI Z170A GAMING M5
VGA : GALAX GTX1080 EXOC 8GB
Ram : KINGSTON Hyper-X Fury DDR4 32GB (8X4)
HDD 1 : Western Digital Black 2TB
HDD 2 : Western Digital Blue 1TB
HDD 3 : Western Digital Blue 1TB
HDD 4 : Western Digital Blue 1TB
SSD : KINGSTON Hyper-X Savage 480GB
Power Supply : CORSAIR RM850 (850Watt)
Case : CORSAIR Carbide SPEC-ALPHA Black-Red
CPU Cooling : COOLER MASTER Seidon 120V V3 Plus
OS : Microsoft Windows 10 64bit
----------------------------------------­----------------------------------------­---------------------
สังกัด Online Station ช่วยให้ช่องคุณเติบโตขึ้นแบบก้าวกระโดด คนดูวิดีโอเยอะขึ้น มีรายได้เพิ่มมากขึ้น ใครทำช่อง Youtube อยู่สมัครได้เลยที่นี่ http://caster.os.co.th
----------------------------------------­----------------------------------------­---------------------
::: สนใจติดต่อโฆษณาหรือสปอนเซอร์ :::
ติดต่อทีมงาน Online Station
โทร : 02-647-5162
อีเมล์ : [email protected]

以碳氫化合物熱裂解法製備碳包覆奈米高熵合金顆粒

為了解決Carbide Create的問題,作者曾兆綦 這樣論述:

由於具有獨特的性質和應用科技開發潛力,高熵合金已成為材料界極感興趣的研究目標。高熵合金是由四個以上的主要元素,以等莫爾比方式組成,因此本質上,它們的構型熵大於單一元素組成的合金。不過,在低維度時不僅表面能會增加,且會出現類似原子成簇的傾向,而使製造奈米顆粒變得極為困難。此論文中展示如何以簡單的製程於奈米碳管中合成出高熵合金奈米顆粒。電子顯微鏡和元素分析的結果皆證實被碳層所包覆的奈米顆粒為固溶相,且有些部分被碳化物環繞,組成成分元素為四元至五元的多域結構。多域結構和非磁性中心所產生的硬化現象,會顯著提高室溫下的矯頑磁場。較高的飽和磁場是源於合金化的過程會使電子重新分布到較高的能階。被碳層所包覆

的高熵合金奈米顆粒其構型熵落在與塊材高熵合金相似的範圍中。第一章 介紹奈米碳管和高熵合金的背景,包括碳管的結構、高熵合金的定義以及兩個主題分別的合成方法。第二章 說明本論文使用的實驗設定和儀器介紹。第三章 透過電子顯微鏡和成分分析證明本論文的方法可以製備出的高熵合金奈米顆粒,同時其磁性質和多域的現象也將在此章節中被討論。第四章 總結以上實驗結果。

材料的界面與表面對相變化與塑性變形的理論研究

為了解決Carbide Create的問題,作者施柏安 這樣論述:

The interface is a region in which two different phases are in contact with eachother. For example, it can be formed between two grains of the same material with different crystallographic orientations (grain boundary) or between twophases of the same material (inter-phase boundary). Surfaces can b

e classifiedas a particular type of interface between the solid and air. The type of interfacenot only influences the properties but also controls the transformation betweentwo phases. Also, the large surface area to volume ratio in nanomaterials suchas nanowires and nanorods is responsible for thei

r exceptional mechanical, electronic, and optical properties. This study is concerned with (a) role of interfaces inaustenite (γ) to ferrite/martensite (α) transformation in iron and (b) deformationbehavior of single and multi-component high entropy alloy (HEA) nanowires.This thesis focuses on explo

ring the role of interfaces during interface-controlledphase transformations using atomistic simulations. First, we compare the transformation mechanisms for the flat and ledged interface using an embedded atom method (EAM) potential. After that, we have explored the role of disconnectionson interfa

ce velocity and mobility for the ledged interface. At last, we study thedeformation behavior of Ag nanowires and CoCrFeMnNi HEA nanowires andexplore the synergistic sequence of the mechanisms responsible for their uniquedamage tolerance and other mechanical properties.The thesis begins with a genera

l introduction to solid-solid phase transformation related to iron systems in Chapter 1. We begin our discussion with a briefdescription of different types of solid-solid phase transformation, associated interface structure, and orientation relationships. This is followed by the review ofsome previo

us works related to the FCC-BCC phase transformation in iron. Atlast, we discuss the nanowires and their mechanical properties.Chapter 2, discusses different tools to simulate phase transformation, deformation behavior, and related material properties. We briefly introduce variousconcepts of molecul

ar dynamics (MD) simulation and density functional theory(DFT). We also discuss the interatomic potentials such as EAM and MEAM usedin the current study.In chapter 3, using MD and DFT based ab initio calculations, we determine thethermodynamic properties required for iron phase transformation and na

nowires’deformation behavior. We discuss calculating several thermodynamic properties,like the lattice parameter, enthalpy, melting temperature, Gibbs free energy, andstacking fault energy. These properties are in good agreement with the existing experimental and first-principle studies, which valid

ates the accuracy of thepotential used to describe the inter-atomic interactions. We calculate the stacking fault energy of the different elements using DFT-based ab initio calculations.We obtain the unstable stacking fault (USF), intrinsic stacking fault (ISF), unstable twinning fault (UTF), and ex

trinsic stacking fault (ESF) for all the given elements and demonstrate their respective generalized stacking fault energy (GSFE)curves. We use the approach used by Kibey et al. [‡] to get the input structuresfor different fault configurations.Chapter 4, shows how the interface morphology affects th

e phase transformation in iron by running MD simulations for the flat BCC-FCC interface in whichthe two phases are joined according to Nishiyama–Wasserman orientation relationship vs. a ledged interface having steps similar to the vicinal surface at different temperatures. We also characterize the a

tomic matching pattern, dislocationnetwork, and respective line and Burgers vector directions at the interface with the help of common neighbor analysis and Nye tensor analysis (NTA) for both theinterfaces. We identify the atomic displacements and the misfit dislocation network at the interface lead

ing to the phase transformation. Atomic structures ofthe inter-phase boundary and displacements leading to the phase transformationare also uncovered. Interestingly, interface mobility is found to follow Arrheniuslaw in case of ledged interfaces, while exactly opposite behavior is observed incase of

flat interfaces. We also demonstrate the role of structural ledges or stepsaffecting interface motion at the inter-phase boundary.Chapter 5, investigates the role of disconnections during the austenite to ferrite transformation in pure-Fe, using classical molecular dynamics simulations.We first cre

ate BCC-FCC-BCC interfaces based on Nishiyama–Wasserman orientation relationship and its derivatives. By rotating the FCC crystal, we vary thenumber of disconnections at the adjoining BCC-FCC interfaces. We find that thedisconnections present at the interphase boundary assist in growth of the ferrit

ephase. Small interface velocities (1.19–4.67 m/s) suggest a phase change via massive transformation mechanism. Boundary mobilities obtained in a temperaturerange of 1000 to 1400 K show an Arrhenius behavior, with activation energiesranging from 30–40 kJ/mol. Our study clearly shows that the disconn

ections located at the austenite-ferrite interface facilitate the growth of the α-Fe phase.In chapter 6, we study the deformation behavior of single element Ag nanowiresand CoCrFeMnNi HEA nanowires. We show that deformation mechanism is dependent on dislocation nucleation and propagation for both th

e nanowires. Thesimulation is carried out at a cryogenic temperature, room temperature, and elevated temperatures. Due to high surface energy at cryogenic temperatures, single element Ag nanowires transform into a more preferred phase via nucleationand propagation of partial dislocation across the n

anowire enabling superplasticity. In high entropy alloy CoNiCrFeMn nanowires, the motion of the partialdislocation is hindered by the friction due to the difference in the lattice parameter of the constituent atoms, which is responsible for the hardening and lowering the ductility. We demonstrate th

e temperature-dependent superplasticityand strengthening in both the nanowires. Interestingly, HEA nanowires can perform exceptional strength-ductility trade-offs at cryogenic temperatures. Evenat high temperatures, HEA nanowires can maintain good flow stress and ductility before failure. Mechanical

properties of HEA nanowires are better thanAg nanowires due to synergistic interactions of deformation twinning, FCC-HCPphase transformation, and the special reorientation of the cross-section. Furtherexamination reveals that simultaneous activation of twining-induced plasticity and transformation-

induced plasticity is responsible for the plasticity at differentstages and temperatures. The contribution of stacking fault energy in identifying deformation mechanisms is also discussed. These findings are beneficial fordesigning nanowires at different temperatures with high stability and superior

mechanical properties in the semiconductor industry.Finally, we summarize the main findings of our work in chapter 7, followedby a discussion of the future scope.