CPU 虛擬化的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

CPU 虛擬化的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦李志明,吳國安,李翔寫的 Intel大師帶你架設AI底層:持久記憶體架構服務實作 和賀阮的 云原生架構:從技術演進到最佳實踐都 可以從中找到所需的評價。

這兩本書分別來自深智數位 和電子工業所出版 。

東海大學 資訊工程學系 楊朝棟所指導 劉淑華的 超融合架構上虛擬機器之輸出入效能評估 (2021),提出CPU 虛擬化關鍵因素是什麼,來自於超融合架構、虛擬化、軟體定義儲存、雲端運算。

而第二篇論文崑山科技大學 資訊工程研究所 蔡德明所指導 薛博仁的 Open Source分散式儲存架構應用於虛擬化資源分配平台之研究 (2021),提出因為有 虛擬機器、分散式儲存、集中式儲存、負載平衡的重點而找出了 CPU 虛擬化的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了CPU 虛擬化,大家也想知道這些:

Intel大師帶你架設AI底層:持久記憶體架構服務實作

為了解決CPU 虛擬化的問題,作者李志明,吳國安,李翔 這樣論述:

有記憶體的極速,有M.2 SSD的非揮發性, 持久性記憶體打破現有架構,是量子電腦真正出現之前的最偉大發明! Intel作者群帶你進入持久化記憶體的世界     分層記憶體架構是現代電腦的基石,從CPU之內的L1、L2、L3快取以降,一直到DDR4/5的主記憶體,速度從快到慢,但真正阻礙電腦速度的最大瓶頸,就是下一層的非揮發性儲存了。雖然PCIE Gen4的M.2 SSD已達到7000MB/s的驚人讀取速度,但和處理器內的記憶體來說還是有1000倍以上的差距。為了彌補這個鴻溝,Intel推出了全新的記憶體架構,再揮發性記憶體子系統和發揮發性儲存系統之間,新增了一個新的層次,既能滿足高速的記

憶體資料傳輸,又能保有可儲存性的優點,這個稱之為3D-XPoint的技術,再度造成了整個電腦系統的世代革命。當電腦的主架構發生了天翻地覆的改變時,應用程式、伺服器、資料庫、大數據、人工智慧當然也出現了必需性的變化。在設計巨量資料的服務系統時,傳統針對記憶體斤斤計較的場景不再出現,取代的是大量運用新的持久性記憶體架構來降低系統I/O的頻寬。這對新一代的雲端運算資料中心的影響更是巨大。包括了虛擬機、容器、進而對於應用程式如軟體開發、資料庫、NoSQL、SAP/Hana,Hadoop/Spark也產生了巨大的影響。     本書是國內第一本中文說明這種新型應用的書籍,閱讀本書之後,對大型系統的運維已

不再是TB級而達到PB的記憶體等級了,想想一個巨型的系統服務不需要水平擴充(Scale-out)r而是可以垂直擴充(Scale-up),這完全打破了我們從前的概念,本書將是你在進入量子電腦世代來臨前最迫切需要獲得的知識。   本書特色     1.在英特爾公司任職的多位專家們齊聚一堂,共同創作了這本持久化記憶體的實戰書籍。   2.仔細講解、深入淺出,搭配圖表輔助說明,好看好讀好吸收。   3.台灣第一本詳細解說持久記憶體的電腦書,讓你迅速精進,保持業界頂峰的地位。   名人推薦     「借助英特爾傲騰持久記憶體,我們在記憶體--儲存子系統中創建了一個新層次,這使整個產業都會受益。持久記憶體

基於革命性的英特爾3D-XPoint 技術,將傳統記憶體的速度與容量和持久性結合在一起。」──阿爾珀·伊爾克巴哈(Alper Ilkbahar),英特爾公司資料平台事業部副總裁、記憶體和儲存產品事業部總經理

CPU 虛擬化進入發燒排行的影片

本影片是微星MSI主機板如何開啟VT功能!
順便簡單如何去看CPU是否支援VT~
VT檢測下載位置:https://www.azofreeware.com/2015/09/cpu-v.html
【BIGWEI愛教學】播放清單:https://goo.gl/LMNeV7
相關影片
Asus開啟VT讓您手機模擬器比較順暢:https://youtu.be/4Il7F0xlvOs
2021年新版本安裝教學:https://youtu.be/cChfNu-CIqY
雷電模擬器安裝簡易設定教學:https://youtu.be/_znkdEe2XN8
雷電模擬器簡易按鍵設定教學:https://youtu.be/CF9FUsnKl8M

贊助商品遊戲E-mail:[email protected]
Instagram IG:iweibow
臉書粉絲:https://www.facebook.com/ilovebigwei/
#教學 #開啟VT #虛擬化技術 #Virtualization #Technology #Intel #BIOS #微星MSI

超融合架構上虛擬機器之輸出入效能評估

為了解決CPU 虛擬化的問題,作者劉淑華 這樣論述:

隨著雲端技術的發展與使用的加速普及,數量愈來愈多且日益龐大的雲端資料中心面臨了許多問題,而如何管理與最佳化數量如此龐大的伺服器、網路與儲存體,就成了控制現代化資料中心營運成本與效能的決勝關鍵,於是軟體定義網路 (Software Defined Network, SDN) 與軟體定義儲存 (Software Defined Storage, SDS) 、… 等技術開始被大量的運用在雲端 IaaS 平台的建置上,其中超融合架構 Hyper-Convergence Infrastructure (HCI) 更是成為結合儲存與虛擬化運算平台於一身的資料中心最閃亮的一顆新星,一舉解決了企業原本在儲存

與虛擬化上的投資成本效益問題。在本論文中,將以 Dell EMC VxRail 560F 與 Cisco HX220C 兩座目前業界主流的 HCI 平台為標的,使用在VMware Labs Fling中有很高評價的 HCIBench 超融合基礎架構儲存效能壓測工具來進行超融合架構儲存效能壓測,並進行 HCI 平台上虛擬機的效能實測,並以數據來比較兩者的效能差異,並從中分析兩者在架構差異與各別附加功能與特色對於整體虛擬化效能所帶來的效能影響,以提供未來個人或企業在選擇 HCI 平台時的參考。

云原生架構:從技術演進到最佳實踐

為了解決CPU 虛擬化的問題,作者賀阮 這樣論述:

雲原生之路,漫漫而修遠,因為雲在發展,應用也在發展。如何讓應用充分利用雲的特性煥發全新面貌,這是每個雲原生應用架構領域的人應該思考的問題。   本書分為兩篇,從技術演進講起,讓你充分瞭解系統資源、應用架構和軟體工程的發展歷程,從而擁有技術角度的全域視野;然後介紹雲原生應用的最佳實踐,手把手教你設計一個雲原生應用。   本書適合雲原生應用開發人員、架構師、雲計算從業者閱讀,部分章節對產品團隊、運維人員亦有一定的參考價值。 賀阮 攻讀博士期間的主要研究方向是雲計算安全。畢業之後一直深耕於雲計算領域,工作內容涉及虛擬化內核、容器、調度、安全、微服務、應用架構、軟體設計開發等,工作崗

位覆蓋科研、開發、產品架構、售前解決方案、售中售後支持等。曾先後任OpenStack基金會董事、ISO/IEC JTC1/SC38和ISO/IEC JTC1/SC27標樣委員會委員、聯合國國際電信聯盟(ITU)雲計算安全性群組副報告人,以及多個雲計算學術會議、期刊編輯等職位,從各個維度見證了雲計算行業的發展。   史冰迪 2015年畢業于中央財經大學電腦科學與技術專業,同年進入中國軟體與技術服務股份有限公司,從事政務資訊化相關工作。先後任軟體系統研發工程師、需求經理、軟體專案經理和集成專案大項目經理等多個職位,參與過軟體系統開發生命週期全流程相關工作。2020年進入中國資訊通信研究院從事政務資

訊化專案管理工作,從另一個方向繼續在政務資訊化方向發力,不斷努力將電子政務、數位政府等工作與各類新技術結合。 技術演進篇 第1部分 系統資源 2 第1章 作業系統 3 1.1 作業系統簡介 3 1.1.1 主要功能 4 1.1.2 系統結構 5 1.2 CPU指令集原理 6 1.2.1 特權指令集和非特權指令集 6 1.2.2 保護模式及內核態、用戶態 7 1.2.3 指令工作流程 8 1.3 內核 9 1.3.1 組成模組化 9 1.3.2 單內核 9 1.3.3 微內核 10 1.3.4 外內核 11 第2章 虛擬化 13 2.1 虛擬化概述 13 2.1.1 直接使用物理設備 13 2

.1.2 虛擬化原理 14 2.2 虛擬化指令集 16 2.2.1 敏感指令集 17 2.2.2 虛擬化指令集的工作模式 17 2.3 虛擬化類型 20 2.3.1 全虛擬化 20 2.3.2 類虛擬化 21 2.3.3 硬體輔助虛擬化 22 2.4 虛擬化架構 24 2.4.1 裸金屬架構 24 2.4.2 宿主模式架構 25 2.5 常見的虛擬化產品 25 2.5.1 VMware 25 2.5.2 Xen 26 2.5.3 KVM 26 2.5.4 QEMU 27 2.5.5 NEMU 28 2.5.6 Firecracker 28 2.5.7 VirtualBox 28 2.5.8 L

ibvirt 29 2.5.9 Vagrant 30 第3章 雲計算 32 3.1 雲計算概述 32 3.1.1 虛擬化的不足 32 3.1.2 雲計算的特點 33 3.2 IaaS 34 3.2.1 雲的部署模式 34 3.2.2 IaaS的主要功能 36 3.2.3 IaaS架構 36 3.2.4 雲平臺組織架構 37 3.2.5 OpenStack 39 3.2.6 雲平臺部署架構 41 3.3 PaaS 42 3.3.1 簡介 43 3.3.2 核心功能 45 3.3.3 微軟Azure 47 3.3.4 PaaS的優缺點 48 3.4 SaaS 49 第4章 容器 53 4.1 容器

簡介 53 4.1.1 容器技術的優缺點 53 4.1.2 大事記 54 4.2 基本技術 55 4.2.1 namespace 56 4.2.2 cgroup 59 4.2.3 rootfs 60 4.3 Docker 61 4.3.1 容器運行時 61 4.3.2 鏡像 63 4.3.3 Docker總結 64 4.4 內核容器技術 64 4.4.1 Kata 64 4.4.2 Firecracker 65 4.4.3 gVisor 66 4.4.4 Unikernel 67 4.5 容器與虛擬機器 68 4.6 容器與PaaS 69 第5章 容器編排 70 5.1 容器編排簡介 70 5

.1.1 大事記 70 5.1.2 Swarm與Kubernetes之爭 71 5.1.3 容器編排工具的核心功能 73 5.2 Kubernetes 74 5.2.1 設計理念與特性 74 5.2.2 運行架構 76 5.2.4 API對象 80 5.3 容器編排與PaaS 90 5.4 Kubernetes企業級實戰:OpenShift 91 5.5 實現有狀態應用和無狀態應用 91 5.5.1 無狀態應用與有狀態應用 92 5.5.2 從無狀態應用到Severless 92 5.5.3 Kubernetes對有狀態應用的管理 92 5.5.4 容器編排的最終目標 93 第2部分 應用架構

95 第6章 應用架構概述 96 6.1 架構與框架的區別 97 6.2 狹義的和廣義的應用架構 97 6.2.1 狹義的應用架構 97 6.2.2 廣義的應用架構 98 6.3 應用架構的定義 98 6.4 應用架構的目標 99 第7章 主流架構 101 7.1 “4+1”架構視圖 101 7.1.1 邏輯視圖 102 7.1.2 開發視圖 102 7.1.3 進程視圖 102 7.1.4 物理視圖 103 7.1.5 場景視圖 103 7.2 ArchiMate 104 7.2.1 ArchiMate概述 104 7.2.2 業務層 106 7.2.3 應用層 106 7.2.4 技術層

107 7.3 TOGAF框架 109 第8章 架構詳解 114 8.1 業務架構 114 8.1.1 業務場景 114 8.1.2 業務用例 115 8.1.3 業務實體 115 8.1.4 業務流程 116 8.2 應用架構 116 8.2.1 功能架構 117 8.2.2 數據架構 121 8.2.3 實現架構 124 8.3 基礎架構 131 8.3.1 物理架構 131 8.3.2 運行架構 131 第9章 典型的應用架構模式 133 9.1 單體架構 133 9.1.1 單體架構的特點 133 9.1.2 功能架構 134 9.1.3 單體應用的資料優化 136 9.1.4 單體

架構的優缺點 142 9.2 基於組件的架構 143 9.2.1 特性 144 9.2.2 微內核架構 145 9.2.3 兩種基於元件的應用開發、運行框架 145 9.2.4 組件設計原則 146 9.3 分散式與SOA 148 9.3.1 分散式 148 9.3.2 SOA 150 第10章 微服務架構 160 10.1 微服務架構簡介 160 10.1.1 微服務與應用 161 10.1.2 微服務架構與SOA 162 10.1.3 微服務架構與容器編排 162 10.1.4 微服務架構與組織架構 163 10.2 採用微服務架構的優勢與難點 163 10.3 微服務架構詳解 165 1

0.3.1 功能架構 165 10.3.2 實現架構 166 10.3.3 部署單元 167 10.4 設計原則 167 10.4.1 服務註冊中心 167 10.4.2 API閘道 168 10.4.3 跨服務通信 169 10.4.4 API設計 170 10.4.5 資料一致性處理 172 第11章 微服務框架 181 11.1 微服務架構與微服務框架 181 11.2 核心功能 182 11.2.1 服務註冊發現 182 11.2.2 服務負載路由 183 11.2.3 統一配置 184 11.2.4 服務編排與彈性伸縮 184 11.2.5 流量管控 185 11.2.6 可觀察運維

186 11.3 框架分類 188 11.3.1 業務處理框架 188 11.3.2 SDK框架 189 11.3.3 服務網格 190 第3部分 軟體工程 195 第12章 應用設計 196 12.1 明確願景 196 12.1.1 目標物件 197 12.1.2 度量價值 197 12.1.3 詳細描述 198 12.1.4 上下文圖 198 12.2 明確組織架構 200 12.3 頂層業務建模 201 12.3.1 概述 201 12.3.2 業務領域 202 12.3.3 業務場景 205 12.4 應用需求分析 209 12.4.1 概述 209 12.4.2 識別角色 210

12.4.3 業務實體 210 12.4.4 業務流程 212 12.5 應用設計建模 214 12.5.1 概述 214 12.5.2 圈定微服務 215 12.5.3 應用架構設計 216 12.6 領域驅動建模 218 12.6.1 分散式應用建模的痛點 219 12.6.2 DDD概述 219 12.6.3 DDD的優勢 220 12.6.4 基本概念 221 12.6.5 實施步驟 229 12.6.6 DDD與應用設計 238 第13章 軟體發展 240 13.1 瀑布模型 240 13.2 敏捷開發模型 242 13.2.1 敏捷宣言 243 13.2.2 Scrum 244 1

3.2.3 極限程式設計方法 245 第14章 開發運維一體化:DevOps 248 14.1 精益思想 248 14.1.1 起源 248 14.1.2 精益生產 249 14.1.3 精益原則 250 14.1.4 精益軟體發展 251 14.1.5 價值探索 253 14.1.6 IT價值流 253 14.1.7 精益和敏捷 255 14.2 持續集成 255 14.2.1 原則 255 14.2.2 步驟 256 14.3 持續交付與持續部署 258 14.3.1 持續交付 258 14.3.2 持續部署 259 14.3.3 特性發佈 263 14.4 DevOps與CI/CD 26

9 14.4.1 定義 270 14.4.2 原則與推廣 271 14.4.3 三步工作法 272 14.5 測試 275 14.5.1 概述 275 14.5.2 功能性測試 277 14.5.3 非功能性測試 281 14.6 DevOps與敏捷開發、Kubernetes、微服務、應用架構模式的關係 283 第15章 SRE運維 286 15.1 SRE運維簡介 286 15.1.1 SLA 287 15.1.2 運維的發展階段 288 15.1.3 架構層次 288 15.2 監控 289 15.2.1 監控概述 289 15.2.2 多層監控 291 15.2.3 告警 292 15.

3 日誌 293 15.3.1 日誌系統架構 293 15.3.2 日誌的採集、匯總與展示 294 15.4 故障排查 295 15.4.1 具體步驟 295 15.4.2 監控檢查 296 15.5 作業運行 296 第16章 數位化運營 298 16.1 數位化運營概述 298 16.1.1 運營數據 298 16.1.2 角色分類 299 16.1.3 用戶畫像 299 16.2 資料處理 300 16.2.1 資料獲取 300 16.2.2 數據建模 301 16.2.3 資料分析 301 16.2.4 指標分析 302 16.3 回饋流程 303 16.4 驗證模式 304 16.4

.1 A/B測試 304 16.4.2 灰度發佈 305 16.5 平臺架構 306 16.5.1 運維資料平臺 306 16.5.2 智能化運維 306 最佳實踐篇 第4部分 架構、應用落地與中台構建 310 第17章 雲原生架構 311 17.1 雲原生的定義 311 17.1.1 12因數應用 311 17.1.2 雲原生架構的特徵 313 17.1.3 CNCF對雲原生的定義 314 17.1.4 本書對雲原生的定義 315 17.2 關鍵技術 318 17.2.1 不可變基礎設施(容器) 318 17.2.2 聲明式編排(Kubernetes) 319 17.2.3 微服務架構(解

耦性) 320 17.2.4 動態賦能(服務網格) 320 17.2.5 適應度函數(引導性) 320 17.2.6 領域驅動建模(統一模型) 321 17.2.7 CI/CD/CO 321 17.3 雲原生應用的實現過程 322 第18章 應用落地最佳實踐 323 18.1 雲原生化條件 323 18.1.1 團隊能力建設 323 18.1.2 推薦引入雲原生化的場景 324 18.1.3 不推薦引入雲原生化的場景 326 18.2 演進式的流程 327 18.3 應用改造模式 328 18.3.1 雙胞胎模式 328 18.3.2 絞殺者模式 328 18.3.3 修繕者模式 329 18

.4 應用拆分原則 330 18.4.1 按業務能力拆分 330 18.4.2 按DDD子領域拆分 330 18.4.3 其他原則 332 18.5 API設計與治理 333 18.5.1 前後端分離 334 18.5.2 規範化API 334 18.5.3 並行或非同步調用 336 18.5.4 業務聚合 336 18.6 應用狀態分離 337 18.6.1 統一配置管理 338 18.6.2 將冷資料存儲在資料庫中 338 18.6.3 緩存熱數據 339 18.6.4 靜態資源物件存儲 340 18.7 應用容器化 340 18.8 非侵入式監控接入 345 18.9 流水線建設 347

18.10 架構 347 第19章 中台構建 350 19.1 中台簡介 350 19.1.1 中台的由來 351 19.1.2 中台與雲原生應用 351 19.1.3 中台架構 352 19.1.4 中台與微服務應用 353 19.2 中台核心功能 355 19.3 中台分類 355 19.3.1 技術中台 355 19.3.2 數據中台 356 19.3.3 業務中台 356 19.4 中台的優點 357 19.5 中台對組織架構的挑戰 357 19.5.1 高層的支持 357 19.5.2 參與人員的理念相同 358 19.5.3 中台價值的量化 358 19.5.4 PaaS/Saa

S與中台 358 19.6 中台落地過程 359

Open Source分散式儲存架構應用於虛擬化資源分配平台之研究

為了解決CPU 虛擬化的問題,作者薛博仁 這樣論述:

資訊科技與日俱進,虛擬化在資訊的運用上,屬於劃時代的改變,將一部電

腦透過虛擬化的方式,衍生出多部系統環境。在過去,為了解決大型伺服器資源冗餘問題,以虛擬化的方式,將電腦硬體資源模擬為多個虛擬機器;而現代也透過虛擬化的方式,實現快速部署環境、彈性運用硬體資源的便利,使技術更迅速地融入產業當中。為了維持虛擬機器的可用性、可靠性,需取決於虛擬機器的儲存場域。過去使用集中式儲存的方式,容易造成硬體負載超載,而造成虛擬機器運行失衡,以及單一資料安全性問題,最重要的為集中式儲存一旦故障,所運作的虛擬機器也會受影響;透過分散式儲存,可以降低其中一部儲存系統故障,而不造成虛擬機器中止運作,以及確保資料安全性,但分散式軟體服務不計其

數,該如何評估自己的系統,進而選擇適合的系統,在本研究中,透過 RedHat 所提供的兩個分散式服務為例,Ceph與Gluster作為分散式儲存實例,從資料傳輸效率,虛擬機器的運作效能作為比較,以及各分散式儲存的容錯、災難復原作為分析,挑選出適合運行虛擬機器的場域環境。本研究主要提供虛擬機器運行之場域,並於實體主機中進行負載平衡,防止虛擬機器在過載的實體主機中啟動,在文獻當中已有動態遷移虛擬機器平衡負載的方式,但並未在啟動前對於系統先行評估,故本研究透過實體主機的運行狀況,判斷 記憶體剩餘容量、CPU處理器使用率、儲存空間容量,來判定目前虛擬機器適合在哪部實體主機中運行。經由本研究測試,使用集

中式儲存以及分散式儲存,其傳輸效能最佳的為分散式Gluster分佈式卷進行RAID 0所組織,約每秒經由dd測試工具寫入535 MB,但在該模式上並未有容錯機制;而在容錯上適合雲系統儲存的為分散式Gluster分散式卷,以及分散式Ceph儲存架構,將資料個別分割後,分散至各個儲存裝置中,並基於糾刪碼原理,使儲存裝置上有所容錯,即使發生其中一部主機或範圍內硬碟故障,也不影響虛擬機器運作;兩個作為分散式儲存的架構,Ceph在維護、復原機制勝過於Gluster分散式卷,其主要為Ceph透過CRUSH演算法,將每個分割壓縮過後的檔案,分散至各個硬碟中,當硬碟發生故障進行抽換, CRUSH演算法即計算出

遺失的資料位置,從其他健康的硬碟進行備援,而Gluster僅透過HASH演算法,將資料進行標記後,將資料依照硬碟數量進行等分分割壓縮,最後再傳輸至各硬碟當中。本研究主要供應中小型企業、教育場域使用,透過一般電腦自組分散式儲存系統,供應虛擬機器儲存使用。由於一般電腦效能、資源不比大型企業所用的高階伺服器,故配合資源分配機制,來維持虛擬機器的運行;並在自組架構中的維護,提供災難復原機制,降低錯誤發生時的瑣碎問題。