3540基本資料的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

國立清華大學 工程與系統科學系 柳克強所指導 李修竹的 側壁表面波電漿放電研究-微波耦合結構設計與電漿/微波交互作用特性之分析 (2021),提出3540基本資料關鍵因素是什麼,來自於表面波電漿、數值模擬、COMSOL、氬氣電漿、微波調頻、微波特性。

而第二篇論文國立臺灣大學 機械工程學研究所 莊嘉揚所指導 邱奕宏的 以深度學習與4D列印反向設計3D複雜曲面──以人臉面具為例 (2021),提出因為有 4D 列印、形狀記憶聚合物、形狀變形、反向設計、深度學習、FCN的重點而找出了 3540基本資料的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了3540基本資料,大家也想知道這些:

側壁表面波電漿放電研究-微波耦合結構設計與電漿/微波交互作用特性之分析

為了解決3540基本資料的問題,作者李修竹 這樣論述:

表面波電漿(surface wave plasma)的優點為大面積、高密度、高均勻度等,大面積晶圓製程、極短製程時間、奈米等級關鍵尺寸為目前半導體工業之趨勢,表面波電漿為理想的製程電漿源。本研究根據側壁表面波電漿源結構,以數值模擬計算分析進一步探討電漿腔體與微波源耦合之特性,模型包括電漿理論、電磁波理論,同時考慮熱傳與流場影響,在頻域下以麥克斯韋方程求解電磁場與功率沉積,了解電漿腔體與微波源之耦合特性,在側壁表面波電漿(Side Wall Surface Wave Plasma)腔體結構,微波由溝槽天線耦合至介電質腔壁,在介電質腔壁與高密度電漿間形成駐波之表面波結構。分析穩態電漿與功率源的功

率反射頻譜分佈,分析在不同電漿吸收功率下穩態電漿的S11頻譜偏移,模擬結果顯示每提高1 kW的微波吸收功率,共振頻率約提高23 MHz,可藉由調整微波功率源的操作頻率達成功率源與電漿腔體的阻抗匹配。為符合實務上固定輸入功率的微波功率源操作模式,進一步以微波端口設定固定輸入功率,探討調頻微波流程。先以符合表面波模態的微波頻率激發初步電漿分布,再調整微波功率源的頻率至共振頻率,可以提高微波吸收功率,其穩態結果之微波特性及電漿特性與固定吸收功率之結果相近。由於微波調頻耦合的阻抗匹配較機械式諧調器快之優勢,本研究將有助於脈衝表面波電漿源的研製。許多製程機台為控制到達晶圓表面的離子能量,加入射頻偏壓影響

電漿電位分布,因此本研究建立表面波電漿源並包含射頻偏壓之數值模擬模型,觀察到射頻偏壓電漿特性的增強與自偏壓現象。

以深度學習與4D列印反向設計3D複雜曲面──以人臉面具為例

為了解決3540基本資料的問題,作者邱奕宏 這樣論述:

4D列印奠基在3D列印技術之上,利用形狀記憶效應使物件經過外界如熱或光等刺激後能再次變形,其優勢是在印製空心或懸空的網格結構時能省下大量的支撐材,並進而大幅加速製造的速度。過去雖有研究使用形狀記憶聚合物組成的平面網格透過4D列印來進行立體網格的製作,但由於變形機制的高度非線性與鄰近網格的相互牽連,反向設計的過程非常困難。因此,本研究探討了形狀記憶聚合物作為平面網格材料的設計空間,希望能以深度學習自動化反向設計的過程。其中本研究利用熔融堆疊式的3D列印機列印SMP55時儲存的預應力作為4D列印的機制,結合PLA產生的遇熱會彎曲的雙層結構,產生共四種的單元網格配置的平面網格設計空間。本研究先以人

為反向設計藉由嘗試錯誤的方法,搭配有限元素法與繪圖軟體反向設計三個日本能面,驗證了此設計空間的多樣性。接著深度學習反向設計的部分,本研究將人臉面具的平面網格設計以多項式的參數來生成大量的隨機人臉面具,並搭配有限元素模擬產生對應的變形形狀作為深度學習模型訓練的資料集。模型架構上本研究選擇通常用於影像分割(Image segmentation)任務的全卷積網路(Fully convolutional network)模型進行反向設計,模型會根據目標形狀的深度照片來生成平面網格設計。在測試資料集中全卷積網路生成的人臉面具能夠有超過0.95的相素準確度與0.9的平均並交比,代表網格設計變形形狀的深度照

片也有約0.9的結構相似性與7.5的均方誤差。雖然模型在資料集外如日本能面的反向設計結果不是很理想,卻已足夠證明此一方法的可行性。本研究也以日本能面為例以泡熱水實驗與石膏鋪膜的方法改善了人臉面具的製程,其結果不僅能夠驗證有限元素的模擬,也能製造出與能面相似的面具。