3.5mm aux線的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

長庚大學 奈米工程及設計碩士學位學程 周煌程、杨杰圣所指導 梁文顏的 低功耗高性能電流式感測放大器設計 (2020),提出3.5mm aux線關鍵因素是什麼,來自於電流式電路、感測放大器。

而第二篇論文國立交通大學 光電工程研究所 林怡欣所指導 王毓仁的 自由光學曲面波前調制之液晶光電元件 (2020),提出因為有 自由光學曲面、液晶透鏡、相位調制、波前調制、向列型液晶、像差的重點而找出了 3.5mm aux線的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了3.5mm aux線,大家也想知道這些:

3.5mm aux線進入發燒排行的影片

#Creative #T100 #Speakers #廣東話評測

今天和大家開箱的是Creative T100 Hi-Fi 2.0 掦聲器

Creative T100 是一對多功能揚聲器
支援Hi-Fi2.0輸出,支持藍牙5.0連線,3.5 mm 輸入和光纖輸入。另外也可以直接播放USB儲存裝置內的音效。
2 x 20W RMS 及最高 80W 輸出。
另外也附有多功能搖控,除了可以調節4個預設EQ, 也可以調整高音和低音,控制藍牙裝置的播放,音量、上一首及下一首歌等。
可以接駁手機、平版電腦、桌上電腦、遊戲主機等。大家對今次 Creative T100 Hi-Fi 2.0 揚聲器有何看法呢?歡迎留言分享。

0:00 試咪及閒談
1:36 頻道重要宣布 (IG 帳戶)
4:16 開始及講解開箱及測試方法
7:00 規格介紹
14:37 開箱
21:20 外觀
24:18 線長度
26:54 測試聲音前設定 (請使用耳)
32:15 詳細測試聲音 (3.5mm AUX in)
41:30 詳細測試聲音 (藍牙)
55:05 調整收音咪高度
57:07 聲畫同步問題
1:08:40 預告

低功耗高性能電流式感測放大器設計

為了解決3.5mm aux線的問題,作者梁文顏 這樣論述:

Table of ContentsRecommendation Letters from Thesis AdvisorsThesis/Dissertation Oral Defense Committee CertificationPreface iiiAbstract ivTable of Contents vList of Figures viiList of Tables xiChapter 1 Introduction 11.1 Memory and Processors 21.2 Sense Amplifiers 31.3 Technology Trends 41.4 Circui

t Trends 51.5 Other Trends 61.6 SRAM Trends 71.7 Associated Challenges 9Chapter 2 A Circuits Survey 102.1 The Two Broad Classes 102.2 Voltage Sensing 122.3 Current Sensing 162.4 Others 20Chapter 3 Development of a Three-Transistor I–V Converter 223.1 Low Drop-Out Voltage Regulator as a I–V Converter

233.2 I–V Converter as a Current Sense Amplifier 253.3 Simplifying the I–V Converter 253.4 Proof of Concept 273.5 Quest for a Better Error Amplifier 293.6 Revisiting the Proof of Concept 31Chapter 4 Implementation of a Current Sense Amplifier 344.1 Sense Amplifier Shut-Down 344.2 Static Power Reduc

tion 364.3 Pulsed Word-Line Operation 374.4 Bit-Line Capacitance—Effect on Delay 394.5 Bias Variation 414.6 Relevant Concerns 43Chapter 5 Conclusion 445.1 Simulation Results 445.2 Considerations for Long Bit-Lines 465.3 Measurements 475.4 Derivative Circuits 495.5 Derivative Use 525.6 Summary 555.7

Final Thoughts 55References 56Appendices 83List of FiguresFigure 1.1 Die micrograph from [Singh et al., 2018] 2Figure 1.2 Layout from [Takemoto et al., 2020] 2Figure 1.3 Package from [Poulton et al., 2019] 4Figure 1.4 Wearable for happiness index from [Yano et al., 2015] 6Figure 1.5 Test chip from [

Song et al., 2017] 7Figure 2.1 Left–right: nMOS common-source, -gate and -drain amplifier configurations 10Figure 2.2 Left–right: pMOS common-drain, -gate and -source amplifier configurations 11Figure 2.3 Bi-stable constructed of two inverters 11Figure 2.4 Regenerative latch transient simulation out

put 11Figure 2.5 nMOS differential pair 12Figure 2.6 nMOS–input pair differential amplifier 13Figure 2.7 Clocked latch with isolation 14Figure 2.8 Current-controlled latch 15Figure 2.9 Left–right: Resistor and nMOS approximates 16Figure 2.10 Left–right: Resistor and pMOS approximates 16Figure 2.11 n

-p-n common-base amplifier 17Figure 2.12 Partial schematic from [Yeo and Rofail, 1995] 17Figure 2.13 Left–right: nMOS and pMOS current mirrors 18Figure 2.14 Current sense amplifier from [Ishibashi et al., 1995] 18Figure 2.15 Current sense amplifier from [Seno et al., 1993] 19Figure 2.16 Current conv

eyor from [Seevinck et al., 1991] 19Figure 2.17 pMOS-neutralised nMOS differential pair 20Figure 2.18 Λ-type negative resistance from [Wu and Lai, 1979] 21Figure 2.19 I D -V D characteristic of the Λ-type negative resistance 21Figure 3.1 Three-transistor I–V converter 22Figure 3.2 Simplified low dro

p-out voltage regulator 23Figure 3.3 Low drop-out voltage regulator configured as a I–V converter 24Figure 3.4 Low drop-out voltage regulator as a current sense amplifier 25Figure 3.5 Reference-free I–V converter 26Figure 3.6 Logic inverters as positive-gain amplifier 26Figure 3.7 Proof of concept d

esign 27Figure 3.8 Proof of concept design transient simulation output 28Figure 3.9 Typical and unintended input(s) of the logic inverter 29Figure 3.10 Normalised absolute gain plot for each inverter input 30Figure 3.11 Connections made for the absolute gain plot 30Figure 3.12 Bias generator for the

absolute gain plot 31Figure 3.13 Error amplifier replacement in the proof of concept design 31Figure 3.14 Three-transistor I–V converter 32Figure 3.15 Corresponding bias generator of Figure 3.14 32Figure 3.16 Simulation circuit for verifying the improved error amplifier 33Figure 3.17 Demonstration

of the three-transistor I–V converter as a current sense amplifier 33Figure 4.1 Actions to achieve desired node characteristics during shut-down 34Figure 4.2 Figure 3.14 modified for shut-down 35Figure 4.3 Corresponding bias generator of Figure 4.2 35Figure 4.4 Shared use of bias generator 36Figure

4.5 Pseudo-differential version of Figure 4.4 37Figure 4.6 Pseudo-differential configuration of Figure 3.14 37Figure 4.7 Pulsed read of a ZERO 38Figure 4.8 Pulsed read of a ONE 38Figure 4.9 Differential development across dynamic bit-lines and csa outputs 39Figure 4.10 Delay behaviour with capacitiv

e bit-line loading 40Figure 4.11 Normalised csa bias current variation with supply voltage 41Figure 4.12 Normalised csa bias current variation with temperature 42Figure 4.13 Mismatch view of Figure 3.14 43Figure 5.1 Test set-up (external trigger connection not drawn) 47Figure 5.2 Oscillogram demonst

rating circuit functionality at VDD = 2.55V 47Figure 5.3 Test set-up photograph 48Figure 5.4 Left–right: Three-transistor I–V converter and its complement 49Figure 5.5 Transfer characteristics of the circuits in Figure 5.4 49Figure 5.6 Four-transistor I–V converter 50Figure 5.7 Corresponding bias ge

nerator of Figure 5.6 50Figure 5.8 Impact of sizing on AC performance 51Figure 5.9 Left–right: V SS -, V DD -referenced and floating optical receiver front ends 52Figure 5.10 Transfer characteristic of floating I–V converter 53Figure 5.11 High output resistance eases filter realisation 53Figure 5.12

Three-transistor I–V converter operating as an open-drain receiver 54Figure A.1 inv symbol 84Figure A.2 Alternate inv symbol 84Figure A.3 inv transistor-level schematic 84Figure A.4 inv4 symbol 85Figure A.5 inv4 transistor-level schematic 85Figure A.6 inv16 symbol 86Figure A.7 inv16 transistor-leve

l schematic 86Figure A.8 nand2 symbol 87Figure A.9 nand2 transistor-level schematic 87Figure A.10 nand2b symbol 88Figure A.11 nand2b gate-level schematic 88Figure A.12 nor2 symbol 89Figure A.13 nor2 transistor-level schematic 89Figure A.14 nor2b symbol 90Figure A.15 nor2b gate-level schematic 90Figu

re A.16 or2 symbol 91Figure A.17 or2 gate-level schematic 91Figure A.18 tinv symbol 92Figure A.19 tinv transistor-level schematic 92Figure A.20 dlat symbol 93Figure A.21 dlat gate-level schematic 93Figure A.22 dlatr symbol 94Figure A.23 dlatr gate-level schematic 94Figure A.24 dlats symbol 95Figure

A.25 dlats gate-level schematic 95Figure A.26 tie0 symbol 96Figure A.27 tie0 transistor-level schematic 96Figure A.28 tie1 symbol 97Figure A.29 tie1 transistor-level schematic 97Figure B.1 bit0 symbol 99Figure B.2 bit0 transistor-level schematic 99Figure B.3 bit1 symbol 100Figure B.4 bit1 transistor

-level schematic 100Figure B.5 blrc symbol 101Figure B.6 blrc cell-level schematic 101Figure B.7 pre symbol 102Figure B.8 pre transistor-level schematic 102Figure B.9 rblrc symbol 103Figure B.10 rblrc cell-level schematic 103Figure B.11 wr symbol 104Figure B.12 wr transistor-level schematic 105Figur

e B.13 anand2 symbol 106Figure B.14 Alternate anand2 symbol 106Figure B.15 anand2 transistor-level schematic 107Figure B.16 ckgen symbol 108Figure B.17 ckgen gate-level schematic 108Figure B.18 peri symbol 109Figure B.19 peri cell-level schematic 110Figure B.20 csa symbol 111Figure B.21 csa transist

or-level schematic 111Figure B.22 kobl symbol 112Figure B.23 Alternate kobl symbol 112Figure B.24 kobl transistor-level schematic 113Figure B.25 kobs symbol 114Figure B.26 kobs transistor-level schematic 114Figure C.1 sram1 symbol 116Figure C.2 sram1 block-level schematic 117Figure C.3 sram2 symbol

118Figure C.4 sram2 block-level schematic 119Figure C.5 sram3 symbol 120Figure C.6 sram3 block-level schematic 121Figure D.1 ainvl symbol 123Figure D.2 ainvl transistor-level schematic 123Figure D.3 ainvs symbol 124Figure D.4 Alternate ainvs symbol 124Figure D.5 ainvs transistor-level schematic 124F

igure D.6 cut symbol 125Figure D.7 cut cell-level schematic 126Figure D.8 inAmp symbol 127Figure D.9 inAmp cell-level schematic 127Figure D.10 CD4007 symbol 128Figure D.11 CD4007 transistor-level schematic 128Figure D.12 LF356 symbol 129Figure D.13 LF356 cell-level schematic 129Figure D.14 TL431 sym

bol 130Figure D.15 TL431 cell-level schematic 130Figure D.16 tialp symbol 131Figure D.17 tialp transistor-level schematic 131Figure D.18 tiasd symbol 132Figure D.19 tiasd transistor-level schematic 132Figure D.20 tiasn symbol 133Figure D.21 tiasn transistor-level schematic 133Figure D.22 tiasp symbo

l 134Figure D.23 tiasp transistor-level schematic 134Figure E.1 nfet and equivalent nMOS symbol 135Figure E.2 pfet and equivalent pMOS symbol 136Figure E.3 Circuit for estimating per-bit junction capacitance 137Figure E.4 Simulation output for estimating per-bit junction capacitance 138Figure E.5 Ci

rcuit for estimating per-bit bit-line leakage current 138Figure E.6 ID-VD characteristics 139Figure E.7 ID-VG characteristics 140Figure E.8 anand2 transistor-level schematic 141Figure E.9 Test board functional blocks 144Figure E.10 Test board block-level schematic 145Figure E.11 Signal source connec

ted to abbreviated input network 148Figure E.12 General form of a typical instrumentation amplifier 150Figure E.13 Inverting integrator section of test board 154List of TablesTable 1.1 Semiconductor memory hierarchy 1Table 5.1 Column height h = 512b 44Table 5.2 Column height h = 1Kb 44Table 5.3 Colu

mn height h = 2Kb 44Table 5.4 Summarised measurement results 48Table A.1 List of standard cells 83Table A.2 inv truth table 84Table A.3 inv4 truth table 85Table A.4 inv16 truth table 86Table A.5 nand2 truth table 87Table A.6 nand2b truth table 88Table A.7 nor2 truth table 89Table A.8 nor2b truth tab

le 90Table A.9 or2 truth table 91Table A.10 tinv truth table 92Table A.11 dlat truth table 93Table A.12 dlatr truth table 94Table A.13 dlats truth table 95Table A.14 tie0 truth table 96Table A.15 tie1 truth table 97Table B.1 List of custom cells 98Table B.2 pre truth table 102Table B.3 wr truth tabl

e 104Table C.1 SRAM cells and read path configurations 115Table D.1 List of other cells 122Table E.1 Transistor performance 140Table E.2 Primary bill of materials 146Table E.3 Additional hardware 147Table E.4 List of instruments 155Table F.1 List of abbreviations 158Table F.2 List of symbols 159Tabl

e F.3 List of AC quantities 160Table F.4 List of DC quantities 161Table F.5 List of partial-swing signals 162Table F.6 List of rail–rail signals 162Table F.7 List of instance names 163

自由光學曲面波前調制之液晶光電元件

為了解決3.5mm aux線的問題,作者王毓仁 這樣論述:

自由光學曲面在幾何光學領域上提供更多的設計自由度,並允許以更少的元件數量來提升可視角、增加景深、或是提升影像品質。自由光學曲面已在擴增實境、虛擬實境、量子系統、整合型光學系統、航太光學系統等等中被採用。然而,因幾何上沒有旋轉對稱軸,自由光學曲面的挑戰包含:製造困難、組裝與整合中額外的相位誤差、量測與量化方法還需開發。一個可以將平面波轉換成任意波前的新型態光學元件還是被高度期待著。本論文提出並驗證了世界第一個具有自由光學曲面波前之液晶光電元件。僅利用向列型液晶中非等向性的分子傾角,儘管施加電場分布是旋轉對稱的,液晶層還是能打破對稱性並提供非對稱之波前像差。基於液晶的電控自由光學曲面元件提供電控

調變的等效光軸與可電控的波前像差組合(以澤爾尼克多項式表示)。當具有自由曲面波之液晶元件與反射式光學系統整合時,斜向入射光下的像差(慧差)可以顯著改善。基於折射率漸變型態之液晶元件,平面化之幾何結構並在生產製造上相對簡單,也可克服傳統自由光學曲面遇到的挑戰。本論文的研究成果有助於開發與設計自由光學曲面之應用。在折射率漸變型液晶元件,液晶透鏡的困難挑戰在於大孔徑設計與波前像差之控制。本論文也提供一種方法,首先以在空間中擴展光學相位分佈來解決大孔徑挑戰,並允許透鏡區域化且獨立地控制波前像差。另外,因應微型化光學系統的需求,本論文首先探索了反射式液晶透鏡與液晶元件在斜向入射光下、不同偏振態之像差,可

用來補償光學系統的偏振像差。在應用方面,擴增實境的視覺輻輳調節衝突挑戰,可利用電控液晶透鏡與電控液晶平行版來調變虛像投影深度。搭配不同的設計,液晶元件可同時提供視力矯正功能與光學變焦於系統中。本論文以系統的角度探索液晶光學元件的設計,光學相位調制的概念可延伸到不同的應用,如無人機、衛星影像系統等等。