電池容量單位的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

電池容量單位的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦陳筱君,蔡永昌寫的 新一代 科大四技化工群基礎化工升學寶典 -最新版(第二版) - 附MOSME行動學習一點通:詳解.影音.診斷.評量 和路易斯‧達奈爾的 最後一個知識人:末日之後,擁有重建文明社會的器物、技術與知識原理都 可以從中找到所需的評價。

另外網站電池種類與差異 - kipp的部落格也說明:常見的一次性電池包括: 鋅錳電池(碳鋅電池)—電壓約1.5V,電池容量較低,能. ... 當中,t(h)是放電時間(單位是小時)、Q(Ah)是電池容量(單位是安倍 ...

這兩本書分別來自台科大 和臉譜所出版 。

明志科技大學 化學工程系碩士班 楊純誠、施正元所指導 林冠吟的 添加不同導電碳材應用於磷酸鋰鐵/碳陰極複合材料 (2021),提出電池容量單位關鍵因素是什麼,來自於磷酸鋰鐵、溶膠凝膠法、多孔氧化石墨烯、氣相生長碳纖維、鋰離子擴散係數、電子導電度、原位X-ray繞射光譜儀、原位顯微拉曼光譜儀。

而第二篇論文淡江大學 國際事務與戰略研究所博士班 施正權所指導 曾明斌的 臺灣海事軟實力之建構與運用---以海巡署為例的分析 (2021),提出因為有 軟實力、海洋治理、海洋政策、海巡外交的重點而找出了 電池容量單位的解答。

最後網站行動電源、手機電池容量的計算單位元,mah是什麼?則補充:MAH並不是一個能量單位,它需要乘上當前的電壓才是真正的能量。一般電池都是1S單電芯,標準電壓相同的時候用MAH來比較容量是可行的。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了電池容量單位,大家也想知道這些:

新一代 科大四技化工群基礎化工升學寶典 -最新版(第二版) - 附MOSME行動學習一點通:詳解.影音.診斷.評量

為了解決電池容量單位的問題,作者陳筱君,蔡永昌 這樣論述:

  1.重點掃描:將各章節內容重要觀念及公式作有系統的整理   2.精選範例及同步練習:立即鞏固重點知識。   3.綜合測驗:以章為單位,擴大練習題的層面並融入生活題。   4.歷屆統測精選:蒐錄近年相關考題,幫助學生掌握考題方向。   5.答對率:提供統一入學測驗中心公告全體考生在每一選擇題的答對百分比。   6.火紅素養題型:精準分析素養題結構,面對跨域題型也能游刃有餘。   7.QR code:提供各章節試題的線上詳解。   8.「MOSME 行動學習一點通」:可線上閱讀詳解、線上測驗,自我練習增強記憶力,反復測驗提升應考戰鬥力。  

電池容量單位進入發燒排行的影片

【 15:44 單位勘誤:前窗為0.5cm,後窗為0.4cm 】

電動車已無疑是未來汽車工業發展的趨勢,而在特斯拉之後,許多具有百年歷史的車廠也紛紛跟上電動車的發展腳步。繼上次嘉偉哥在西班牙馬拉加試駕到的e-tron,這次跟Audi Taiwan爭取到Audi e-tron 55 quattro的兩個版本,分別為e-tron 55 quattro Advanced以及e-tron 55 quattro Sportback。

Audi e-tron 55 quattro搭載了前、後兩具馬達,電池容量為95kWh。在變速箱換到S檔時,最大綜效馬力可以來到408匹之譜,扭力的表現則為664牛頓米,0~100km/h加速5.7秒,最高續航力也有436公里。另外在充電效率方面,如果利用DC直流充電可以在半小時內就充滿,一般家用插座則是需要4~8小時左右才能充滿。

Audi e-tron 55 quattro全車系標配6具氣囊,在輔助駕駛的部分有完整的Level2半自動輔助駕駛,包含了ACC 主動式定速巡航控制系統、塞車輔助系統、前方預警式安全防護系統、主動式車道維持及偏離警示系統、撞擊閃避輔助系統、左轉預警輔助系統、 盲點警示系統、 後方橫向車流輔助系統、後方預警式安全防護系統、預警式安全防護系統。而本次嘉偉哥試駕到的車款,都搭載了Audi全新的虛擬後視鏡,究竟虛擬後視鏡在辨識度以及方便性的部分是否能完全取代傳統後照鏡呢?就讓我們一起來看這次嘉偉哥的試駕吧!

【留言就送ORO太陽能通用型胎壓偵測器】
只要於『Go車誌官網』本影片下方,留言寫下本次影片心得,就有機會獲得ORO太陽能通用型胎壓偵測器!本次將會抽出一位幸運的車迷朋友喔!

更多影片盡在Go車誌官網:https://www.buycartv.com/
-------------------------------------------------------
音樂來源:
Lost Sky - Lost [NCS Release]

添加不同導電碳材應用於磷酸鋰鐵/碳陰極複合材料

為了解決電池容量單位的問題,作者林冠吟 這樣論述:

目錄明志科技大學碩士學位論文口試委員審定書 i誌謝 ii摘要 iiiAbstract v目錄 viii圖目錄 xi表目錄 xvii第一章 緒論 11.1 前言 11.2 研究動機 2第二章 文獻回顧 42.1 鋰離子二次電池之發展 42.1.1鋰離子二次電池反應機制及熱失控 52.2 陰極材料(Cathode materials) 82.3 陽極材料(Anode) 102.4 隔離膜(Separator) 122.5 電解質(Electrolyte) 142.6 磷酸鋰鐵(LiFePO4)的基本特性 162.7 磷酸鋰鐵陰極材料改質方法 182.7.

1 碳層包覆 182.7.2 添加導電/包覆導電的碳材 212.7.3 縮小粒徑 242.8 磷酸鋰鐵材料之合成方法 262.8.1 微波法(Microwave method) 262.8.2 溶膠凝膠法(Sol-gel method) 282.8.3 水熱法(Hydrothermal method) 312.8.4 噴霧乾燥法(Spray-drying method) 35第三章 實驗方法 393.1 實驗藥品與儀器 393.1.1 實驗儀器與設備 403.2 LFP/C複合陰極材料之製備方法 413.2.1磷酸鋰鐵/碳(LFP/C)製備方法 413.2.2磷酸鋰鐵

/碳/多孔氧化石墨烯(LFP/C/PGO)製備方法 423.2.3磷酸鋰鐵/碳/氣相生長碳纖維(LFP/C/VGCF)製備方法 443.3 LFP/C之陰極複合材料之物性、化性分析 463.3.1磷酸鋰鐵/碳(LFP/C)陰極材料之物化性分析方法 473.3.2磷酸鋰鐵/碳(LFP/C)陰極材料之化學成份分析 563.4 磷酸鋰鐵/碳(LFP/C)陰極材料之電化學性質分析 573.4.1電極片製備 573.4.2鈕扣型鋰離子半電池封裝 593.4.3電池充/放電穩定度測試 603.4.4循環伏安法測試 613.4.5交流阻抗測試 623.4.6恆電流間歇滴定法測試 64

第四章 結果與討論 654.1 磷酸鋰鐵/碳(LFP/C)之材料晶相結構分析 654.1.1原位-晶相結構分析 674.2 磷酸鋰鐵/碳(LiFePO4/C)之表面形態分析 724.2.1 磷酸鋰鐵/碳(LFP/C)之材料化學組成元素分析 764.2.2 磷酸鋰鐵/碳(LFP/C)之顯微結構微分析 794.3 磷酸鋰鐵/碳(LFP/C)之碳層結構分析 844.3.1原位-顯微拉曼光譜分析 864.4 磷酸鋰鐵/碳(LFP/C)之比表面積分析(BET) 884.5磷酸鋰鐵/碳(LFP/C)之粉末電子導電度分析 914.6 磷酸鋰鐵/碳(LFP/C)之殘碳量分析 924.7

磷酸鋰鐵/碳(LFP/C)電化學分析法 934.7.1 磷酸鋰鐵/碳(LFP/C)之低電流速率之充放電分析 934.7.2 磷酸鋰鐵/碳(LFP/C)之高電流速率之充放電分析 994.7.3 磷酸鋰鐵/碳(LFP/C)之長期循換穩定性分析 1044.8 磷酸鋰鐵/碳(LFP /C)循環伏安分析 1184.8.1磷酸鋰鐵/碳(LFP/C)電化學微分曲線分析 1204.9 磷酸鋰鐵/碳(LFP/C)交流阻抗及鋰離子擴散係數分析 1244.9.1磷酸鋰鐵/碳(LFP/C)恆電流間歇滴定法測試 129第五章 結論 135參考文獻 137 圖目錄圖 1、鋰離子二次電池充放電原理示意圖

[12]。 5圖 2、1992年至2020年鋰離子電池的世界市場價值[15]。 6圖 3、鋰離子二次電池熱失控三個階段示意圖[19]。 7圖 4、陰極材料中主要分為三種不同的晶體結構[28]。 9圖 5、鋰離子電池之陽極材料分類圖。 10圖 6、鋰離子電池之陽極材料特性。 11圖 7、各種製造隔離膜的方法示意圖[39]。 12圖 8、磷酸鋰鐵(LiFePO4)與磷酸鐵(FePO4)晶格結構圖[53]。 17圖 9、LiFePO4和LiFePO4/C複合材料的SEM圖。 18圖 10、LiFePO4和LiFePO4/C複合材料的SEM圖。 19圖 11、未塗覆TWEEN 80

的LiFePO4 (a). SEM圖 (b). TEM和HRTEM圖;塗覆了TWEEN 80的LiFePO4 (c). TEM和 (d). HRTEM圖。 20圖 12、LFP–CNT–G組合的網絡結構示意圖[58]。 21圖 13、SEM圖 (a). 原始LFP (b). LFP-CNT複合材料 (c). LFP-G複合材料 (d). LFP-CNT-G複合材料;TEM圖 (e). 原始LFP (f). LFP–CNT複合材料 (g). LFP–G複合材料 (h). LFP–CNT–G複合材料。 22圖 14、(a) VC/LFP及C/LFP的放電曲線圖、(b) VC/LFP及C/LF

P循環比較圖。 22圖 15、VC/LFP和C/LFP的EIS阻抗曲線比較圖。 23圖 16、$VGCF的製造過程示意圖[60]。 23圖 17、LFP/C和LFP/C-Tween分析(a). XRD圖譜,(b). 粒徑分佈,(c).和(d). SEM圖,(e)和(f). TEM圖。 25圖 18、(A). LiFePO4/graphene,(B). LiFePO4/C複合材料在0.1至10C不同電流速率下的充電/放電曲線。 27圖 19、(A). LiFePO4/graphene,(B). LiFePO4/C複合材料在0.1至10 C的各種電流速率下的充電/放電循環性能圖。 27

圖 20、SEM圖(a). HY-LiFePO4 (b). HY-SO-LiFePO4。 29圖 21、(a)、(b) LiFePO4/C和(c)、(d) LiFePO4/CG樣品的SEM和TEM圖。 30圖 22、(a)、(b) LiFePO4/C和(c)、(d) LiFePO4/CG複合材料在不同速率下的充電/放電曲線和循環性能。 30圖 23、LiFePO4/C核-殼複合材料(a). XRD圖, (b). SEM圖, (c). TEM圖, (d). HRTEM圖。 32圖 24、SEM圖(a). 3DG, (b). FP, (c)、(d). FP/3DG, (e). LFP/C,

(f). LFP/3DG /C。 33圖 25、LFP/C和LFP/3DG/C,(a). 0.2C、(b). 1C時的循環性能曲線和庫侖效率。 34圖 26、LFPO/rGO複合材料(a)~(c). SEM圖像,(d)~(f). TEM圖像。 34圖 27、SEM圖(a). Hy-LFP/C (b). Hy-LFP/GO/C (c). SP-LFP/GO/C和(d). SP-LFP/PGO/C。 36圖 28、(a). Hy-LFP/C, (b). SP-LFP/GO/C, (c). SP-LFP/PGO/C複合材料在0.2~10C時的充放電曲線, (d). LFP複合材料的速率能力曲

線圖。 36圖 29、具有不同NC層含量的LiFePO4的SEM圖(a).0 wt. %NC (b).2 wt. %NC (c).5 wt. %NC (d).10 wt. %NC。 37圖 30、HRTEM圖(a).LFP/C, (b).LFP/C/CNT, (c).LFP/C/G, (d).LFP/C/G/CNT。 38圖 31、LiFePO4/C陰極材料之流程示意圖。 45圖 32、LiFePO4/C陰極複合材料的各性質檢測項目之流程圖。 46圖 33、布拉格表面衍射示意圖。 47圖 34、X-ray繞射分析儀(Bruker D2 Phaser)。 48圖 35、原位繞射分析

光譜儀組件。 49圖 36、掃描式電子顯微鏡(Hitachi S-2600H)圖。 50圖 37、高解析穿透式電子顯微鏡(JEOL JEM2100)。 51圖 38、顯微拉曼光譜儀(Confocal micro-Renishaw)。 52圖 39、原位顯為拉曼分析光譜儀組件。 53圖 40、比表面積分析儀。 54圖 41、將錠片夾入自製夾具之示意圖。 55圖 42、元素分析儀(Thermo Flash 2000)。 56圖 43、LiFePO4/C複合陰極材料電極片製備之流程圖。 58圖 44、CR2032鈕扣型半電池封裝示意圖。 59圖 45、佳優(BAT-750B)電池

測試儀。 60圖 46、恆電位電池測試儀(MetrohmAutolab PGST AT302N)圖。 61圖 47、AC交流阻抗測試圖譜(Nyquist plot)示意圖。 62圖 48、BioLogic BCS-805電池測試儀。 64圖 49、添加不同導電碳材之陰極複合材料XRD分析圖譜。 66圖 50、(a) LFP/C、(b) LFP/C/VGCF電極在充放電1次循環下的In-situ XRD分析圖。 69圖 51、LFP/C電極在不同範圍之In-situ XRD分析圖。 70圖 52、LFP/C/VGCF電極在不同範圍之In-situ XRD分析圖。 70圖 53、在

In-situ XRD充放電過程中LFP相的比例圖。 71圖 54、PGO之SEM表面形貌圖: (a). 1kx (b). 5kx (c). 10 kx (d) 20 kx。 73圖 55、VGCF之SEM表面形貌圖: (a). 1kx (b). 5kx (c). 10 kx (d) 20 kx。 73圖 56、LFP/C之SEM表面形貌圖: (a).、(b). 在5kx、(c).、(d). 在10kx。 74圖 57、LFP/C/PGO之SEM表面形貌圖: (a).、(b). 在5kx、(c).、(d). 在10kx。 74圖 58、LFP/C/VGCF之SEM表面形貌圖: (a)

.、(b). 在5kx、(c).、(d). 在10kx。 75圖 59、LFP/C樣品EDS元素mapping分析圖。 76圖 60、LFP/C樣品EDS元素分析光譜圖。 76圖 61、LFP/C/PGO樣品EDS元素mapping分析圖。 77圖 62、LFP/C/PGO樣品EDS元素分析光譜圖。 77圖 63、LFP/C/VGCF樣品EDS元素mapping分析圖。 78圖 64、LFP/C/VGCF樣品EDS元素分析光譜圖。 78圖 65、自製PGO添加劑在HR-TEM之分析圖。 80圖 66、市售VGCF添加劑在HR-TEM之分析圖。 80圖 67、LFP/C粉體在H

R-TEM之分析圖。 81圖 68、LFP/C/PGO粉體在HR-TEM之分析圖。 82圖 69、LFP/C/VGCF粉體在HR-TEM之分析圖。 83圖 70、添加不同導電碳材之LFP/C陰極複合材料之拉曼分析結果圖。 85圖 71、LFP/C在不同範圍之In-situ micro-Raman分析圖。 87圖 72、LFP/C/VGCF在不同範圍之In-situ micro-Raman分析圖。 87圖 73、LFP/C材料之BET比表面積分析圖。 89圖 74、LFP/C/PGO材料之BET比表面積分析圖。 89圖 75、LFP/C/VGCF材料之BET比表面積分析圖。 9

0圖 76、LFP/C含不同導電碳材,在0.1C/0.1C充放電速率下,首次充放電克電容量曲線圖。 94圖 77、LFP/C在0.1C/0.1C充放電速率活化階段電性曲線圖。 95圖 78、LFP/C/PGO在0.1C/0.1C充放電速率活化階段電性曲線圖。 96圖 79、LFP/C/VGCF在0.1C/0.1C充放電速率活化階段階段電性曲線圖。 97圖 80、LFP/C添加不同導電碳材在0.1C/0.1C速率下活化曲線圖。 98圖 81、LFP/C在0.2C/0.2C-10C充放電速率電性曲線圖。 100圖 82、LFP/C/PGO在0.2C/0.2C-10C充放電速率電性曲線圖

。 101圖 83、LFP/C/VGCF在0.2C/0.2C-10C充放電速率電性曲線圖。 102圖 84、添加不同導電碳材在0.2C/0.2-10C速率電性曲線圖。 103圖 85、LFP/C在0.1C/0.1C充放電速率30 cycles電性曲線圖。 106圖 86、LFP/C/PGO在0.1C/0.1C充放電速率下30 cycles電性曲線圖。 107圖 87、LFP/C/VGCF在0.1C/0.1C充放電速率30 cycles電性曲線圖。 108圖 88、LFP/C添加不同導電碳材在0.1C/0.1C充放電速率30 cycles電性曲線圖。 109圖 89、LFP/C在1

C/1C充放電速率100 cycles之電性曲線圖。 110圖 90、LFP/C/PGO在1C/1C充放電速率100 cycles之電性曲線圖。 111圖 91、LFP/C/VGCF在1C/1C充放電速率下100 cycles之電性曲線圖。 112圖 92、LFP/C添加不同導電碳材在1C/1C充放電速率100 cycles之電性曲線圖。 113圖 93、LFP/C在1C/10C充放電速率下100 cycles之電性曲線圖。 114圖 94、LFP/C/PGO在1C/10C充放電速率下100 cycles之電性曲線圖。 115圖 95、LFP/C/VGCF在1C/10C充放電速率下

100 cycles之電性曲線圖。 116圖 96、添加不同導電碳材在1C/10C充放電速率100 cycles之電性曲線圖。 117圖 97、LFP/C添加不同導電碳材之CV分析圖。 119圖 98、LFP/C樣品之電化學微分曲線分析。 121圖 99、LFP/C/VGCF樣品之電化學微分曲線分析。 122圖 100、LFP/C樣品添加不同導電碳材之電化學微分曲線分析。 123圖 101、等效電路圖模組圖[112]。 125圖 102、在0.1C/0.1C充放5次循環後,不同導電碳材製備LFP/C樣品:(a). EIS阻抗比較圖、(b).鋰離子擴散係數比較圖。 126圖 10

3、在0.1C/0.1C充放30次循環後,不同導電碳材製備LFP/C樣品(a). EIS阻抗比較圖、(b). 鋰離子擴散係數比較圖。 127圖 104、在1C/1C充放100次循環後,不同導電碳材製備LFP/C樣品(a). EIS阻抗比較圖、(b). 鋰離子擴散係數比較圖。 128圖 105、LFP/C單次步驟充放電曲線圖(a) charge;(b) discharge。 132圖 106、LFP/C之V vs.τ1/2分析圖。 132圖 107、LFP/C之GITT充放電曲線圖。 133圖 108、LFP/C/VGCF之GITT充放電曲線圖。 133圖 109、GITT單次步驟比

較(a) charge、(b) discharge。 134圖 110、GITT之充電分析圖。 134 表目錄表 1、鋰離子電池之陰極材料的特性比較分析表 9表 2、鋰離子電池常用有機溶劑之特性比較 15表 3、LiFePO4與FePO4之晶格參數 17表 4、實驗藥品 39表 5、實驗儀器與設備 40表 6、充放電條件計算表 60表 7、方程式中符號及單位 63表 8、添加不同導電碳材之陰極複合材料XRD晶相比較表 66表 9、添加不同導電碳材之LFP/C陰極複合材料之拉曼分析結果 85表 10、LFP/C、LFP/C/PGO、LFP/C/VGCF之比表面積分析結果

88表 11、LFP/C、LFP/C/PGO、LFP/C/VGCF之粉體電子導電度結果分析 91表 12、添加不同導電碳材之陰極複合材料之殘碳含量分析 92表 13、LFP/C含不同導電碳材,在0.1C/0.1C充放電速率下,首次充放電克電容量比較 94表 14、LFP/C在0.1C/0.1C充放電速率活化階段電性比較 95表 15、LFP/C/PGO在0.1C/0.1C充放電速率活化階段電性比較 96表 16、LFP/C/VGCF在0.1C/0.1C充放電速率活化階段電性比較 97表 17、LFP/C添加不同導電碳材在0.1C/0.1C速率下活化比較 98表 18、LFP/C在

0.2C/0.2C-10C充放電速率電性比較 100表 19、LFP/C/PGO在0.2C/0.2C-10C充放電速率電性比較 101表 20、LFP/C/VGCF在0.2C/0.2C-10C充放電速率電性比較 102表 21、添加不同導電碳材在0.2C/0.2-10C速率電性比較表 103表 22、LFP/C/PGO在0.1C/0.1C充放電速率下30 cycles電性比較表 107表 23、LFP/C/VGCF在0.1C/0.1C充放電速率下30 cycles電性比較表 108表 24、LFP/C添加不同導電碳材在0.1C/0.1C充放電速率30 cycles電性比較表 10

9表 25、LFP/C添加不同導電碳材在1C/1C充放電速率100 cycles之電性比較表 113表 26、添加不同導電碳材在1C/10C充放電速率100 cycles之電性比較表 117表 27、LFP/C添加不同導電碳材之CV分析結果 119表 28、LFP/C樣品之電化學微分曲線分析表 121表 29、LFP/C/VGCF樣品之電化學微分曲線分析表 122表 30、LFP/C樣品添加不同導電碳材之電化學微分曲線分析 123表 31、在0.1C/0.1C充放5次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 126表 32、在0.1C/0.

1C充放30次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 127表 33、在1C/1C充放100次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 128表 34、鋰離子的擴散係數方程式中符號及單位 130

最後一個知識人:末日之後,擁有重建文明社會的器物、技術與知識原理

為了解決電池容量單位的問題,作者路易斯‧達奈爾 這樣論述:

一本末日版「大人的科學」,得到英國《泰晤士報》、《新科學人》科學類選書、亞馬遜讀者5顆星推薦,售出全球十三國版權 世界毀滅,只是一瞬間的事, 突發海嘯、重量級地震、超級流感肆虐、核電廠大爆炸…… 如果你所知道的文明已經不存在了,你要如何在新世界活下去? ★來自科學家的文明保存計畫,一部全景式科學簡史,一個重建文明社會的技術解決方案。 ★從現象觀察到作實驗,從科學原理延伸到工業應用,明白今日科學文明的背後,科技如何建構了生活。 ★書中從食、衣、住、行,農耕、水力風力發電到復興化學工業,還有如何重回電力生活,皆詳細解說,要給末日知識人最實用的建議。 你是否曾經想過: *種子、農具及肥料哪

裡來?冬天缺糧怎麼辦? *飲用水如何過濾、消毒?沒有冰箱,食物如何在土盆中保鮮? *為了重建家園,該怎麼從頭製造磚塊、水泥和鋼筋混凝土?  *如何利用汽車引擎和廢棄零件,組成暖爐、臨時水上發電機等維生設備? *燃料耗竭,怎麼開車、烹飪,甚至燒製玻璃、煉鐵?  *病毒肆虐,沒有顯微鏡和藥物,怎麼對抗微生物大軍? *欠缺電力設備,如何自行發電、製造能源? *如何組裝、架構通訊設備,與外面世界搭上線? *只用「公尺」就能推算出體積、容量、面積、溫度等度量衡單位   ………… 在末日,現代人類習以為常的事物,都會因資源匱乏而不敷使用。人類的生活會變成什麼樣子?會回到遠古採集漁獵的洞穴生活?還是從廢紙

堆中撿拾各種被忽略的知識,重新發現生活日用品的發明之祕,盡可能早日重啟科學文明? ◆  如果身處戈馬克.麥卡錫《長路》世界中,你需要這本末日生存科普指南 ◆  若是不幸成為《我是傳奇》中的地球最後一人,這本所說的生存技能最好盡可能記得 ◆  不小心被捲入《瘋狂麥斯》的資源爭奪戰,除了活命還要守住機械工具和零件,保護重要的人事物…… 科學家路易斯‧達奈爾探討現代文明社會的物質基礎,發現已少有人能完整掌握建構器物的技術和原理,於是從農業、建築、材料、醫學、運輸、製造、通訊等面向,帶領讀者重新認識建構文明社會必備的知識和技能,在世界向人類反撲、末日來臨之前,我們要為成為「最後一個知識人」做準備,

也讓你我思索:如果重新來過,科技該如何發展,世界又該演變成什麼樣貌? 人們將告別用金錢換取商品的資本主義社會,來到人人都是科學家的大實驗室時代,你帶著化學及物理知識的操作手冊,四處探索,尋找能夠點石成金的物件和文明棄物,按圖索驥,學著自己過濾飲水,用廚餘製作肥料,收集罐頭,用簡易鑄鐵設備煉鐵,吹出玻璃瓶,試圖找到可種植的種子,最後開墾田地,把人集合起來變成村莊,想辦法收集所有資源,想著如何重啟第二次工業革命。達奈爾所相信的是,物質文明也許有一天將走到最後,但只要知識沒有被破壞,人類就能按部就班重建生活。 這本書,不只是關於科幻、後末日的反英雄或者黑暗冒險故事,關於隕石撞地球、核子冬天、城市

變廢墟的景象,你不知道什麼時候來臨,也不知道是否成真。但是人們要是對現代科技麻木無感,對事物的製造過程一知半解,末日魯賓遜又該怎麼求生?反之,當人們一次次對日常、無用之物產生興趣,有一天將使科學再生! 【海外媒體推薦】 「非凡的成就!一本即使文明沒有毀滅也該讀的好書。如果文明真的毀滅,這本書將成為新世界珍貴的文本。路易斯.達奈爾是第一個厲害的末日預言家。」 ——《泰晤士報》(The Times) 「『重新啟動』人類文明DIY終極指南。」 ——英國科學雜誌《自然》(Nature) 「詞藻生動,淺顯易懂,處處流露耐人尋味的事實和對科技深具感染力的熱情。」 ——英國《BBC夜空雜誌》(BBC

Sky at Night Magazine) 「頌揚人類聰明才智的讚美詩……必讀著作。」 ——英國《新政治家》雜誌(New Statesman) 「掌握了路易斯.達奈爾的新書,我應該就能自信滿滿踏進天啟末日後的未來……達奈爾的末日生存指南,不只提供豐富資訊,也引人入勝。」 ——美國《每日郵報》(Daily Mail) 「就如童軍常常說的——凡事做好準備!向上天祈禱你永遠都不需要這本書。」 ——貝爾•吉羅斯(Bear Grylls),美國Discovery《荒野求生祕技》節目主持人 「不管這本書能不能拯救你的命——它都非常有趣。多希望當初有人在學校就把這本書給我們。它讓所有事情都有了意

義。」 ——肯.麥克勞德(Ken MacLeod),英國科幻小說《秋季革命系列》(Fall Revolution Series)作者 「如果世界毀滅,這本書就會非常有用;即使世界不滅,它還是很有趣。要是彗星撞地球,這本書可以救你,或者你起碼可以知道自己怎麼死的。」 ——S.M. 史德林(S.M.Stirling),美國架空小說《時間孤島》(Island in the Sea of Time)作者 「糟糕的氣候變遷、大爆炸、星球殺手隕石、末日病毒、核災恐怖主義以及超級智慧電腦的終極統治,面對這些威脅,路易斯.達奈爾寫了這本我們早該擁有的詳細指南,告訴你在末日該如何求生:以充滿啟發性及娛樂性的

視野,說明如何重啟人生、文明以及所有事物。達奈爾的後末日求生觀點提供了一個卓越、全景式的視野,告訴我們文明實際上是怎麼作用的。」 ——羅格.海菲爾德(Roger Highfield),英國科普記者,作家及科學博物館(Science Museum Group)執行長  

臺灣海事軟實力之建構與運用---以海巡署為例的分析

為了解決電池容量單位的問題,作者曾明斌 這樣論述:

總統蔡英文女士於2019年3月21日至26日率領內閣成員至南太平洋邦交國進行國是訪問,並將此行取名為「海洋民主之旅」,以海洋與民主為主軸,拜訪大洋洲的友邦帛琉、諾魯及馬紹爾等國,以實際行動穩固邦交,並與前揭國家簽訂《海巡合作協定》(Coast Guard Agreement)。海巡署近年展現的海上執法與救難成果似乎正幫國家開啟另一扇大門,吸引其他國家的交流與合作,海巡外交(Coast Guard Diplomacy)也成為臺灣新的對外交流模式。海巡署對外所展現的吸引力,似乎與約瑟夫.奈伊(Joseph S. Nye Jr.)在80年代提出的軟實力(Soft Power)概念相契合,強調國家除

了能運用軍事與經濟等硬實力外,仍有其他能力足以影響其他國家決策,不論是議程的設定或國際建制的建立,藉由彼此均認同的價值與系統,達到權力運用的效果與影響力。在奈伊的研究中,認為軟實力主要源於文化、政治價值與外交政策,惟本研究認為除了前揭三種來源以外,隨著非傳統安全與全球治理的議題逐漸被國際社會重視,國家在海洋事務各種層面的卓越表現,將成為新的軟實力來源,本研究將其稱之為「海事軟實力」。本研究將以奈伊所建立的「軟實力」理論為基礎,輔以海洋意識與行動等要素,結合權力分析的概念,進行理論推導與修正,建立「海事軟實力」概念架構,並分析「海事軟實力」可能的權力資源與行動,建立相關的評估指標與方法,並以海巡

署為例進行實際操作。