電動汽車 鋰電 池的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

電動汽車 鋰電 池的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦伊廷鋒,謝穎寫的 鋰離子電池電極材料 和伊廷鋒謝穎的 鋰離子電池電極材料都 可以從中找到所需的評價。

另外網站認識這4種電動車電池買車絕對不會吃虧!也說明:目錄 隱藏. 1 電動車普及化是全球最新趨勢. 2 電動腳踏車常見的電池種類. 2.1 鉛酸電池. 2.2 鎳氫電池. 2.3 鋰電池. 2.4 三元鋰電池. 3 電動腳踏車電池比較表. 4 電池、 ...

這兩本書分別來自崧燁文化 和千華駐科技有限公司所出版 。

國立臺灣科技大學 應用科技研究所 蘇威年、黃炳照、陳瑞山、吳溪煌所指導 Haylay Ghidey Redda的 用於高性能超級電容器和無負極鋰金屬電池的碳基和聚合物基複合電解質 (2021),提出電動汽車 鋰電 池關鍵因素是什麼,來自於垂直排列碳奈米管 (VACNT)、電化學雙層電容器 (EDLC)、二氧化鈦 (TiO2)、凝膠聚合物電解質 (GPE)、柔性固態超級電容器 (FSSC)、無陽極鋰金屬電池和超離子導體 (NASICON)。

而第二篇論文開南大學 觀光運輸學院碩士在職專班 陳韜所指導 葉明德的 台灣電動車發展之分析 (2021),提出因為有 綠色電力、空氣污染、電動車、里程焦慮、碳中和、PEST分析的重點而找出了 電動汽車 鋰電 池的解答。

最後網站鋰電池電動車 - 百科知識中文網則補充:鋰電電動車 即鋰電池電動車,指搭載鋰離子電池的電動汽車。近年來,傳統內燃機汽車所造成的環境問題和石油資源緊缺使人們將視野投向了新能源汽車。純電動汽車以其能真正 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了電動汽車 鋰電 池,大家也想知道這些:

鋰離子電池電極材料

為了解決電動汽車 鋰電 池的問題,作者伊廷鋒,謝穎 這樣論述:

  鋰離子電池因其具有比能量大、自放電小、重量輕和環境友善等優點而成為行動式電子產品的理想電源,也是電動汽車和混合電動汽車的首選電源。因此,鋰離子電池及其相關材料已成為世界各國科研人員的研究熱門議題之一。   鋰離子電池主要由正極材料、負極材料、電解液和電池隔膜四部分組成,其性能主要取决於所用電池內部材料的結構和性能。而電極材料决定着電池的性能,同時也决定電池50%以上的成本。   本書結合作者多年來電化學及化學電源科研與教學經驗,介紹了各類電極材料以及電極的制備方法與結構,着重介紹了高性能鋰離子電池正極的設計與功能調控,包括了:層狀電極材料、尖晶石電極、磷酸鹽正極材料

、矽酸鹽正極材料、碳負極材料、鈦基電極材料以及鈦酸鋰電極材料等多種電極材料的設計與性能。適宜從事電池電極設計與製造的科研及技術人員參考。

電動汽車 鋰電 池進入發燒排行的影片

本集節目由「台灣智慧移動產業協會」獨家贊助播出。

「台灣智慧移動產業協會」是由一群關心智慧運輸與能源應用各界專業人士組成,致力將友好環境及自然共生的理念導入智慧交通中,推動智能、永續的美好生活願景。

現在就到協會官網和粉專,了解更多豐富的電動車資訊,以及氣候變遷的討論吧!
👉 官方網站:https://smat.org.tw/
👉 官方粉專:https://www.facebook.com/smartmobilitytaiwan/

#電動車 #電動機車 #氣候變遷
--
✔︎ 成為七七會員(幫助我們繼續日更,並享有會員專屬福利):http://bit.ly/shasha77_member
✔︎ 體驗志祺七七文章版:https://blog.simpleinfo.cc/shasha77
✔︎ 購買黃臭泥周邊商品: https://reurl.cc/Ezkbma 💛
✔︎ 訂閱志祺七七頻道: http://bit.ly/shasha77_subscribe
✔︎ 追蹤志祺IG :https://www.instagram.com/shasha77.daily
✔︎ 來看志祺七七粉專 :http://bit.ly/shasha77_fb
✔︎ 如果不便加入會員,也可從這裡贊助我們:https://bit.ly/support-shasha77
(請記得在贊助頁面留下您的email,以便我們寄送發票。若遇到金流問題,麻煩請聯繫:[email protected]

各節重點:
00:00 開頭
01:15 世界各國都在用電動車嗎?
02:48 目前台灣的狀態
04:22 討論1:改用電動車,真的能減少空污?
05:28 討論2:最新燃油機車改善空污的效果,比電動車更好?
06:06 討論3:改用電動車,碳排放量會增加嗎?
07:16 討論4:電動車的生產和廢棄,碳排放量多嗎?
08:46 討論5:如果全部換成電動汽機車,電還會夠用嗎?
10:07 我們的觀點
11:30 問題
11:30 結尾

【 製作團隊 】

|客戶/專案經理:鯉鼬
|企劃:宇軒
|腳本:宇軒
|編輯:土龍
|剪輯後製:Pookie
|剪輯助理:珊珊
|演出:志祺

——

【 本集參考資料 】

→COP26:格拉斯哥氣候峰會的特點、意義和預期:https://bbc.in/3l1pEnF
→《全球電動車展望2020》-IEA:https://bit.ly/3kZULjk
→碳關稅將上路、零碳新賽局開跑!台灣為何該擔憂國際競爭力?:https://bit.ly/3yTn3kI
→Net Zero by 2050-50- A Roadmap for the Global Energy Sector - IEA:https://bit.ly/2WSNiKL
→除了日本...這些國家也規劃禁售燃油車:https://bit.ly/38PFI61
→IHS Markit 全年汽車銷量數據:https://bit.ly/3l0eNdp
→《2021汽車產業趨勢與展望》-勤業眾信:https://bit.ly/3zJ671n
→【圖解】電動車靠這4大關鍵崛起,10年後將突破3千萬輛!一張圖看懂未來趨勢:https://bit.ly/3DOop3D
→未來只要8萬元就能買到電動車!分析師大膽預言讓燃油車挫咧等:https://bit.ly/38Ljfr4
→預言電動車價格戰將至 日本電產CEO:2030年車價將剩1/5:https://bit.ly/3h8Bfjs
【台灣現狀】
→蔡總統宣示淨零轉型之後,運具電動化如何加快腳步? - 報導者:https://bit.ly/3n6RQYM
→「2035年禁售燃油機車」政策 確定轉彎:https://news.pts.org.tw/article/426046
→拚減碳 8科技巨頭組氣候聯盟-環境資訊中心:https://e-info.org.tw/node/230698
→賴清德:面對氣候災難問題 台灣沒有豁免權-中央社:https://bit.ly/2YprDu9
→汽機車統計數據 - 交通部統計查詢網:https://bit.ly/3kQr4RC
→汽機車數量統計 - 交通部公路總局 統計資料:https://bit.ly/3n0UpM6
【 討論1 】
→環保署 - 全國空汙排放量清冊系統﹝TEDS 11.0版﹞排放量統計數據:https://bit.ly/3h8cswa
→Analysis of air quality and health co-benefits regarding electric vehicle promotion coupled with power plant emissions:https://bit.ly/3n3BnVd
【 討論2 】
→車輛電動化政策倒退走?破解「油電平權」假議題:https://bit.ly/38Mp5IF
→七期環保是什麼? 台灣的機車環保法規演進分析:https://bit.ly/3zUBiXO
→年度排放量推估統計:https://bit.ly/3jL6tPm
【 討論3 】
→US energy 電廠+電動車 數據:https://bit.ly/3zOMbdy
→US energy 燃油車 數據:https://bit.ly/3n63tPV
【 討論4 】
→2020.03月 Nature Sustainability 的研究:https://go.nature.com/3n2rgjD
→Mobility and the Energy Transition: A Life Cycle Assessment of Swiss Passenger Transport →Technologies including Developments until 2050:https://doi.org/10.3929/ethz-b-000276298
→電動車廢舊電池回收 中國與歐洲市場的現狀和選項-BBC:https://bbc.in/2WXLjVa
【 討論5 】
→電動車充電 台電將推專用時間電價-自由財經:https://bit.ly/3jIdj8l
→機車電動化 台灣會缺電嗎?-工商時報:https://bit.ly/3kW92xp
→台灣邁向電動車時代 配電空間與用電量都成挑戰 - 公視新聞:https://bit.ly/3thJIWw
→每部電動機車每公里耗電0.024度 來源:行政院環境保護署審查開發行為溫室氣體排放量增量抵換處理原則:https://bit.ly/2WQbzl1
→台灣邁向電動車時代 配電空間與用電量都成挑戰-公視新聞網:https://bit.ly/3yNY1Dx
→【2040電動車化】供電受影響? 台電估:全部電動車化也不怕 - 環境資訊中心:https://bit.ly/3zQg7ps
→在「對的時間」充電有利多 台電靠這四招搞定 - 環境資訊中心:https://e-info.org.tw/node/209502

【 延伸閱讀 】

→百萬噸鋰電池即將報廢,電池回收產業面臨兩大難題:https://bit.ly/3jMBHWz
→A DEAD BATTERY DILEMMA:https://bit.ly/3DP9Z3o
→【電車世代】電池回收大哉問:到底退役電池會去哪?又會被怎麼處理? - INSIDE:https://bit.ly/3jMNOmh



\每週7天,每天7點,每次7分鐘,和我們一起了解更多有趣的生活議題吧!/

🥁七七仔們如果想寄東西關懷七七團隊與志祺,傳送門如下:
106台北市大安區羅斯福路二段111號8樓

🟢如有引用本頻道影片與相關品牌識別素材,請遵循此規範:http://bit.ly/shasha77_authorization
🟡如有業務需求,請洽:[email protected]
🔴如果影片內容有誤,歡迎來信勘誤:[email protected]

用於高性能超級電容器和無負極鋰金屬電池的碳基和聚合物基複合電解質

為了解決電動汽車 鋰電 池的問題,作者Haylay Ghidey Redda 這樣論述:

尋找具有高容量、循環壽命、效率和能量密度等特性的新型材料,是超級電容器和鋰金屬電池等綠色儲能裝置的首要任務。然而,安全挑戰、比容量和自體放電低、循環壽命差等因素限制了其應用。為了克服這些挑戰,我們設計的系統結合垂直排列的碳奈米管 (Vertical-Aligned Carbon Nanotubes, VACNT)、塗佈在於VACNT 的氧化鈦、活性材料的活性炭、凝膠聚合物電解質的隔膜以及用於綠色儲能裝置的電解質。透過此研究,因其易於擴大規模、低成本、提升安全性的特性,將允許新的超級電容器和電池設計,進入電動汽車、電子產品、通信設備等眾多潛在市場。於首項研究中,作為雙電層電容器 (Electr

ic Double-Layer Capacitor, EDLC) 的電極,碳奈米管 (VACNTs) 透過熱化學氣相沉積 (Thermal Chemical Vapor Deposition, CVD) 技術,在 750 ℃ 下成功地垂直排列生長於不銹鋼板 (SUS) 基板上。此過程使用Al (20 nm) 為緩衝層、Fe (5 nm) 為催化劑層,以利VACNTs/SUS生長。為提高 EDLC 容量,我們在氬氣、氣氛中以 TiO2 為靶材,使用射頻磁控濺射技術 (Radio-Frequency Magnetron Sputtering, RFMS) 將 TiO2 奈米顆粒的金紅石相沉積到 V

ACNT 上,過程無需加熱基板。接續進行表徵研究,透過掃描電子顯微鏡 (Scanning Electron Microscopy, SEM)、能量色散光譜 (Energy Dispersive Spectroscopy, EDS)、穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM)、拉曼光譜 (Raman Spectroscopy) 和 X 光繞射儀 (X-Ray Diffraction, XRD) 對所製備的 VACNTs/SUS 和 TiO2/VACNTs/SUS 進行研究。根據實驗結果,奈米碳管呈現隨機取向並且大致垂直於SUS襯底的表面。由拉

曼光譜結果顯示VACNTs表面上的 TiO2 晶體結構為金紅石狀 (rutile) 。於室溫下使用三電極配置系統在 0.1 M KOH 水性電解質溶液中通過循環伏安法 (Cyclic Voltammetry, CV) 和恆電流充放電,評估具有 VACNT 和 TiO2/VACANT 複合電極的 EDLC 的電化學性能。電極材料的電化學測量證實,在 0.01 V/s 的掃描速率下,與純 VANCTs/SUS (606) 相比,TiO2/VACNTs/SUS 表現出更高的比電容 (1289 F/g) 。用金紅石狀 TiO2 包覆 VACNT 使其更穩定,並有利於 VACNT 複合材料的side w

ells。VACNT/SUS上呈金紅石狀的TiO2 RFMS沉積擁有巨大表面積,很適合應用於 EDLC。在次項研究,我們聚焦在開發用於柔性固態超級電容器 (Flexible Solid-State Supercapacitor, FSSC) 的新型凝膠聚合物電解質。透過製備活性炭 (Activated Carbon, AC) 電極的柔性 GPE (Gel Polymer Electrolytes) 薄膜,由此提升 FSSC 的電化學穩定性。GPE薄膜含有1-ethyl-3-methylimidazolium bis(trifluoromethylsulfony)imide, poly (vin

ylidene fluoride-cohexafluoropropylene) (EMIM TFSI) with Li1.5Al0.33Sc0.17Ge1.5(PO4)3 (LASGP)作為FSSC的陶瓷填料應用。並使用掃描式電子顯微鏡 (SEM)、X 光繞射、傅立葉轉換紅外光譜 (Fourier-Transform Infrared, FTIR)、熱重力分析 (ThermoGravimetric Analysis, TGA) 和電化學測試,針對製備的 GPE 薄膜的表面形貌、微觀結構、熱穩定性和電化學性能進行表徵研究。由SEM 證實,隨著將 IL (Ionic Liquid) 添加到主體聚合

物溶液中,成功生成具光滑和均勻孔隙表面的均勻相。XRD圖譜表明PVDF-HFP共混物具有半結晶結構,其無定形性質隨著EMIM TFSI和LASGP陶瓷填料的增加而提升。因此GPE 薄膜因其高離子電導率 (7.8 X 10-2 S/cm)、高達 346 ℃ 的優異熱穩定性和高達 8.5 V 的電化學穩定性而被用作電解質和隔膜 ( -3.7 V 至 4.7 V) 在室溫下。令人感到興趣的是,採用 LASGP 陶瓷填料的 FSSC 電池具有較高的比電容(131.19 F/g),其對應的比能量密度在 1 mA 時達到 (30.78 W h/ kg) 。這些結果表明,帶有交流電極的 GPE 薄膜可以成為

先進奈米技術系統和 FSSC 應用的候選材料。最終,是應用所製備的新型凝膠聚合物電解質用於無陽極鋰金屬電池 (Anode-Free Lithium Metal Battery, AFLMB)。此種新方法使用凝膠聚合物電解質獲得 AFLMB 所需電化學性能,該電解質夾在陽極和陰極表面上,是使用刮刀技術製造14 ~ 20 µm 超薄薄膜。凝膠聚合物電解質由1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide 作為離子液體 (IL), poly(vinylidene fluoride-co-hexafluoropropylene

) (PVDF-HFP)作為主體聚合物組成,在無 Li1.5Al0.33Sc0.17Ge1.5(PO4)3 (LASGP) 作為陶瓷填料的情況下,採用離子-液體-聚合物凝膠法 (ionic-liquid-polymer gelation) 製備。在 25℃ 和 50℃ 的 Li+/Li 相比,具有 LASGP 陶瓷填料的 GPE 可提供高達5.22×〖10〗^(-3) S cm-1的離子電導率,電化學穩定性高達 5.31 V。改良的 AFLMB於 0.2 mA/cm2 和50℃ 進行 65 次循環後,仍擁有優異的 98.28 % 平均庫侖效率和 42.82 % 的可逆容量保持率。因此,使用這種

陶瓷填料與基於離子液體的聚合物電解質相結合,可以進一步證明凝膠狀電解質在無陽極金屬鋰電池中的實際應用。

鋰離子電池電極材料

為了解決電動汽車 鋰電 池的問題,作者伊廷鋒謝穎 這樣論述:

  鋰離子電池因其具有比能量大、自放電小、重量輕和環境友善等優點而成為行動式電子產品的理想電源,也是電動汽車和混合電動汽車的首選電源。因此,鋰離子電池及其相關材料已成為世界各國科研人員的研究熱門議題之一。   鋰離子電池主要由正極材料、負極材料、電解液和電池隔膜四部分組成,其性能主要取决於所用電池内部材料的結構和性能。而電極材料决定着電池的性能,同時也决定電池50%以上的成本。   本書結合作者多年來電化學及化學電源科研與教學經驗,介紹了各類電極材料以及電極的制備方法與結構,着重介紹了高性能鋰離子電池正極的設計與功能調控,包括了:層狀電極材料、尖晶石電極、磷酸鹽正極材料、矽酸鹽正極材料、碳

負極材料、鈦基電極材料以及鈦酸鋰電極材料等多種電極材料的設計與性能。適宜從事電池電極設計與製造的科研及技術人員參考。 作者簡介 伊廷鋒   大學教授、博士生導師。   在電池電極材料方面,至今已發表作者或通訊作者SCI期刊論文102篇,H因子為29,他引2600餘次,影響因子加和超過415,ESI高引論文9篇,先後為Nature Communications、無機化學學報等中外60餘種期刊審稿500餘篇,合作出版《動力電池技術與應用》和《動力電池材料》專著2部。   在教學方面主要從事物理化學、應用電化學、化學電源方面的教學工作。 第1 章 鋰離子電池概述 1.1 鋰離子電池概

述 1.1.1 鋰離子電池的發展簡史 1.1.2 鋰離子電池的組成及原理 1.1.3 鋰離子電池的優缺點 1.2 鋰離子電池電極材料的安全性 1.2.1 正極材料的安全性 1.2.2 負極材料的安全性 1.3 鋰離子電池電極材料的表徵與測試方法 1.3.1 物理表徵方法 1.3.2 電化學表徵方法 1.3.3 電極材料活化能的計算 1.4 鋰離子電池隔膜 1.4.1 鋰離子電池隔膜的製備方法 1.4.2 鋰離子電池隔膜的結構與性能 1.5 鋰離子電池有機電解液 參考文獻 第2 章 鋰離子電池層狀正極材料 2.1 LiCoO2 電極材料 2.1.1 LiCoO2  電極材料的結構 2.1.2

LiCoO2 電極材料的電化學性能 2.1.3 LiCoO2 的製備方法 2.1.4 LiCoO2 的摻雜 2.1.5 LiCoO2 的表面改性 2.2 LiNiO2 正極材料 2.2.1 LiNiO2 的製備方法 2.2.2 LiNiO2 的摻雜改性 2.3 層狀錳酸鋰(LiMnO2) 2.3.1 層狀錳酸鋰的合成 2.3.2 不同的形貌對層狀錳酸鋰的電化學性能的影響 2.3.3 層狀錳酸鋰的摻雜改性 2.4 三元材料(LiNi1/3Co1/3Mn1/3 O2) 2.4.1 LiNi1/3 Co1/3Mn1/3O2 材料的結構 2.4.2 LiNi1/3 Co1/3Mn1/3O2 材料的合成

2.4.3 不同形貌對LiNi1/3 Co1/3 Mn1/3 O2 材料性能的影響 2.4.4 LiNi1/3 Co1/3Mn1/3O2 材料的摻雜改性 2.4.5 LiNi1/3 Co1/3Mn1/3O2 材料的表面包覆 2.5 富鋰材料 2.5.1 富鋰材料的結構和電化學性能 2.5.2 富鋰材料的充放電機理 2.5.3 富鋰材料的合成 2.5.4 富鋰材料的性能改進 參考文獻 第3 章 尖晶石正極材料 3.1 LiMn2O4 正極材料 3.1.1 LiMn2O4 正極材料的結構與電化學性能 3.1.2 LiMn2O4 正極材料的容量衰減機理 3.1.3 LiMn2O4 正極材料製備方

法 3.1.4 提高LiMn2 O4 正極材料性能的方法 3.2 LiNi0.5Mn1.5O4 3.2.1 LiNi0.5Mn1.5O4 正極材料的結構與性能 3.2.2 LiNi0.5Mn1.5O4 正極材料的失效機製 3.2.3 LiNi0.5Mn1.5O4 正極材料的合成 3.2.4 LiNi0.5Mn1.5O4 正極材料的形貌控製 3.2.5 LiNi0.5Mn1.5O4 正極材料的摻雜 3.2.6 LiNi0.5Mn1.5O4 正極材料的表面包覆 參考文獻 第4 章 磷酸鹽正極材料 4.1 磷酸亞鐵鋰 4.1.1 LiFePO4 的晶體結構 4.1.2 LiFePO4 的充放電機理

4.1.3 LiFePO4 的合成方法 4.1.4 LiFePO4 的摻雜改性 4.2 磷酸錳鋰 4.2.1 LiMnPO4 的結構特性 4.2.2 LiMnPO4 的改性研究 4.3 LiCoPO4 和LiNiPO4 正極材料 4.3.1 LiCoPO4 的結構 4.3.2 LiCoPO4 的製備方法 4.3.3 LiCoPO4 的摻雜改性 4.3.4 LiNiPO4 正極材料 4.4 Li3V2(PO4) 3 正極材料 4.4.1 Li3V2(PO4) 3 的結構特點 4.4.2 Li3V2(PO4) 3 的製備方法 4.4.3 Li3V2(PO4) 3 的摻雜改性 4.4.4 不同形貌

的Li3V2(PO4) 3 4.5 焦磷酸鹽正極材料 4.6 氟磷酸鹽正極材料 參考文獻 第5 章 矽酸鹽正極材料 5.1 矽酸鐵鋰 5.1.1 矽酸鐵鋰的結構 5.1.2 矽酸鐵鋰的合成 5.1.3 矽酸鐵鋰的改性 5.2 矽酸錳鋰 5.2.1 矽酸錳鋰的結構 5.2.2 奈米矽酸錳鋰材料的碳包覆 5.2.3 矽酸錳鋰材料的摻雜 5.3 矽酸鈷鋰 參考文獻 第6 章 LiFeSO4F 正極材料 6.1 LiFeSO4F 的結構 6.2 LiFeSO4F 的合成方法 6.2.1 離子熱法 6.2.2 固相法 6.2.3 聚合物介質法 6.2.4 微波溶劑熱法 6.3 LiFeSO4F 的摻

雜改性 6.3.1 LiFeSO4F 的金屬摻雜 6.3.2 LiFeSO4F 的包覆改性 參考文獻 第7 章 碳基、矽基、錫基材料 7.1 碳基材料 7.1.1 石墨 7.1.2 非石墨類 7.1.3 碳奈米材料 7.1.4 石墨烯材料 7.2 矽基材料 7.2.1 矽負極材料的儲鋰機理 7.2.2 矽負極材料奈米化 7.2.3 矽-碳複合材料 7.2.4 其他矽基複合材料 7.3 錫基材料 7.3.1 錫基材料的奈米化 7.3.2 錫-碳複合材料 參考文獻 第8 章 Li4Ti5O12 負極材料 8.1 Li4Ti5O12 的結構及其穩定性 8.1.1 Li4Ti5O12 的結構 8.

1.2 Li4Ti5O12 的穩定性 8.2 Li4Ti5O12 的電化學性能 8.3 Li4Ti5O12 的合成 8.3.1 Li4Ti5O12 的合成方法 8.3.2 Li4Ti5O12 的奈米化及表面形貌控製 8.4 Li4Ti5O12 的摻雜 8.5 Li4Ti5O12 材料的表面改性 8.5.1 Li4Ti5O12 複合材料 8.5.2 Li4Ti5O12 的表面改性 8.6 Li4Ti5O12 材料的氣脹 8.6.1 Li4Ti5O12 材料的產氣機理 8.6.2 抑製Li4Ti5O12 材料氣脹的方法 參考文獻 第9 章 鈦基負極材料 9.1 Li-Ti-O 化合物 9.1.1

LiTi2O4 9.1.2 Li2Ti3O7 9.1.3 Li2Ti6O13 9.2 MLi2Ti6O14(M= 2Na, Sr, Ba) 9.2.1 MLi2Ti6O14(M= 2Na, Sr, Ba) 的結構 9.2.2 MLi2Ti6O14(M= 2Na, Sr, Ba) 的合成方法 9.2.3 MLi2Ti6O14(M= 2Na, Sr, Ba) 的摻雜改性 9.2.4 MLi2Ti6O14(M= 2Na, Sr, Ba) 的包覆改性 9.3 Li2MTi3O8(M= Zn, Cu, Mn) 9.3.1 Li2MTi3O8 9.3.2 Li2MTi3O8 9.3.3 Li2MTi3O

8 9.4 Li-Cr-Ti-O 9.4.1 LiCrTiO4 9.4.2 Li5Cr7Ti6O25 9.5 TiO2 負極材料 參考文獻 第10 章 其他新型負極材料 10.1 過渡金屬氧化物負極材料 10.1.1 四氧化三鈷 10.1.2 氧化鎳 10.1.3 二氧化錳 10.1.4 雙金屬氧化物 10.2 鈮基負極材料 10.2.1 鈮基氧化物負極材料 10.2.2 鈦鈮氧化物(Ti-Nb-O) 10.2.3 其他鈮基氧化物 10.3 磷化物和氮化物負極材料 10.4 硫化物負極材料 10.5 硝酸鹽負極材料 參考文獻 第11 章 鋰離子電池材料的理論設計及其電化學性能的預測 11.

1 鋰離子電池材料的熱力學穩定性 11.1.1 電池材料相對於元素相的熱力學穩定性 11.1.2 電池材料相對於氧化物的熱力學穩定性 11.2 電極材料的力學穩定性及失穩機製 11.2.1 LixMPO4(M= Fe、Mn; x = 0、1) 材料的力學性質 11.2.2 LixMPO4(M= Fe、Mn;x = 0、1) 材料的電子結構及力學失穩機製 11.3 Li2-xMO3 電極材料的晶格釋氧問題及其氧化還原機理 11.3.1 Li2-xMO3 電極材料的晶格釋氧問題 11.3.2 Li2-xMO3 電極材料的氧化還原機理 11.4 鋰離子電池材料的電化學性能的理論預測 11.4.1 電

極材料的理論電壓及儲鋰機製 11.4.2 電極材料的表面形貌的預測及表面效應 11.4.3 鋰離子擴散動力學及倍率性能 參考文獻   序   鋰離子電池因其具有比能量大、自放電小、重量輕和環境友善等優點而成為行動式電子產品的理想電源,也是電動汽車和混合電動汽車的首選電源。因此,鋰離子電池及其相關材料已成為世界各國科研人員的研究熱門議題之一。鋰離子電池主要由正極材料、負極材料、電解液和電池隔膜四部分組成,其性能主要取决於所用電池内部材料的結構和性能。正極材料是鋰離子電池的核心,也是區别多種鋰離子電池的依據,占電池成本的40%以上;負極材料相對來説市場較為成熟,成本所占比例在10%左右。正

極材料由於其價格偏高、比容量偏低而成為制約鋰離子電池被大規模推廣應用的瓶頸。雖然鋰離子電池的保護電路已經比較成熟,但對於電池而言,要真正保證安全,電極材料的選擇十分關鍵。一般來説,和負極材料相比,正極材料的能量密度和功率密度低,並且也是引發動力鋰離子電池安全隱患的主要原因。   目前市場中消費類產業化鋰離子電池產品的負極材料均採用石墨類碳基材料。但是碳基負極材料由於嵌鋰電位接近金屬鋰,在電池使用過程中,隨着不斷的充放電,鋰離子易在碳負極上發生沉積,並生成針狀鋰枝晶,進而刺破隔膜導致電池内部短路而造成安全事故或存在潜在危險。因此,正、負極材料的選擇和質量直接决定鋰離子電池的性能、價格及其安全性

。廉價、高性能的電極材料的研究一直是鋰離子電池行業發展的重點。   為了推動鋰離子電池行業的發展,幫助大專院校、企業院所的研發,我們編著了《鋰離子電池電極材料》一書。全書包括11 章,主要介紹了鋰離子電池各類正極材料和負極材料的製備方法、結構、電化學性能的調控以及第一性原理計算在鋰離子電池電極材料中的應用。編著者已有十多年從事電化學與化學電源的教學、科研的豐富經驗,有鋰離子電池電極材料的結構設計和性能調控及生產第一線的大量實踐經歷,根據自身的體會以及參考了大量國内外相關文獻,進行了本書的編寫。第1~5、7~10 章由伊廷鋒編寫,第6、11 章由謝穎、伊廷鋒編寫。全書由伊廷鋒定稿。對給予本書啓

示和參考的文獻作者予以致謝。並特别感謝舒杰副教授為本書提供了大量數據和圖片。   鋰離子電池電極材料的涉及面廣,又正處於蓬勃發展之中,編著者水平有限,難免掛一漏萬,不妥之處敬請專家和讀者來信來函批評指正。

台灣電動車發展之分析

為了解決電動汽車 鋰電 池的問題,作者葉明德 這樣論述:

當地球溫室效應提升,造成氣候驟變,各國政府及科學家,將「碳中和」視為未來最重要的議題。採用石化燃料的傳統內燃機引擎,正開始受到挑戰,除了面對越來越嚴苛的環保法規外,各大車廠於COP26會議簽署「加速轉型100%零碳排汽貨車聲明」,也說明著電動車即將代表未來,開始搶攻市場。本論文除了闡述台灣的綠能政策及電動車市場發展現況,後文並以質化研究,採訪汽車產業專業經理人,探討未來趨勢,除與現有政策併行討論,包括從碳中和、因應溫室氣體排放管制行動方案、到綠色運具及電力供應。另外並討論電能車在能耗比較、里程焦慮及相關充電及電池問題。並延伸至自動駕駛、無線充電、車聯網甚至元宇宙之關聯。將其依PEST研究結果

指出,在政策面(Politial)呈現對於電動車市場觀望態度居多,相對於2022年電動車市佔率高達65%的挪威,在稅制及各項優免措施,國內仍有待加強及改進的地方。在經濟面(Econmic)則呈現電力供應問題及台電因應措施,相對於廠商角色則提出自身營運轉型的看法。而社會層面(Social Cultrue),電動車盛行及商轉皆有其廠商立論支持,需配合政府鬆綁建築法規,投入公共充電椿佈建以減緩里程焦慮及正確用車習慣的推廣。在技術層面(Technique)則說明自動駕駛及元宇宙所打造的智慧座艙概念,並討論充電效率及電池問題皆可由技術提昇及時間所解決。後續研究並針對台灣綠能車市場及未來佈局,提出電動車已

解決「跑不快」、「開不遠」、「買不起」等三大疑慮。最後將本論文之討論整理,以期作為政府施政參考,此為本研究貢獻之所在。