車用充電器電壓的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

車用充電器電壓的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦劉遂俊(主編)寫的 電動自行車/三輪車電氣故障診斷與排除實例精選(第2版) 和劉遂俊的 圖解蓄電池開蓋維修與修復都 可以從中找到所需的評價。

另外網站富满云矽推出全集成多口互联降压芯片XPM52C - 网易也說明:通过使用XPM52C降压芯片,能够简化多口充电器、插排中的二次降压电路, ... 同步开关降压转换器,内置功率MOS,输入最高电压为31V,满足24V车充应用。

這兩本書分別來自機械工業 和化學工業出版社所出版 。

國立臺灣科技大學 電機工程系 劉益華所指導 何昆哲的 基於金鷹演算法之三階混合全橋LLC諧振轉換器效率最佳化 (2021),提出車用充電器電壓關鍵因素是什麼,來自於電動車、電池充電、三階全橋LLC諧振轉換器、金鷹演算法、綜合效率最佳化。

而第二篇論文國立彰化師範大學 電機工程學系 陳財榮所指導 賴浩平的 雙相並聯非接觸式電池充電器研製 (2021),提出因為有 非接觸式電能轉換、混合諧振補償、無線射頻、雙相並聯的重點而找出了 車用充電器電壓的解答。

最後網站經典回顧,蘋果45W MagSafe 2充電器拆解,PCB板還是綠色的則補充:電路板一側焊接三顆反饋光耦,用於輸出電壓反饋,保護及節能控制。 經典回顧,蘋果45W MagSafe 2充電器拆解,PCB板還是綠色. 同步整流管來自ST,表面被 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了車用充電器電壓,大家也想知道這些:

電動自行車/三輪車電氣故障診斷與排除實例精選(第2版)

為了解決車用充電器電壓的問題,作者劉遂俊(主編) 這樣論述:

一本專門介紹電動自行車、電動摩托車、電動三輪車電氣故障診斷、檢測與排除技術的工具書。本書針對各種常見故障實例進行了較全面的理論分析,給出了合理的診斷檢測步驟,適合維修人員在排除類似故障時進行借鑒,並掌握故障診斷維修的一些關鍵技術。本書在編寫時,打破傳統圖書的編寫模式,以實際維修中所遇到的常見故障為切入點,針對目前市場上流行的車型和款式,采用圖文相結合的方式,對電動自行車、電動摩托車和電動三輪車大量具體故障實例進行剖析,並輔以專家指導、專家點評、特別提示、知識鏈接、故障總結、經驗總結等重點、要點。本書介紹的各種實例均來源於實踐,既有典型性,又有普遍性和實用性,讀者可跟着學、跟着練,力求在實例中得

到啟示,舉一反三,從而領悟原理、掌握技能、開闊眼界、增長經驗。本書可以作為電動車專業維修人員、售后服務人員以及營銷人員的自學讀本,也可以作為各類電動車維修培訓班的培訓教材。劉遂俊,河南省洛陽綠盟電動車維修培訓學校校長兼教師,洛陽綠盟電子科技開發中心主任,曾任技校教師。劉遂俊先生從事電動車、電子電器、電腦教學及維修實踐工作二十余年,即有扎實的理論基礎,又有豐富的實踐經驗,榮獲過「模范教師」稱號;開發研制的「綠盟」牌LY系列蓄電池修復儀、太陽能充電器、LM系列電動車充電站獲多項國家專利。結合電動車維修實際,劉遂俊先生共編着出版了電動車使用和維修類實用技術圖書與教材30多種,都深受廣大讀者喜愛,其中

的《電動自行車四大件維修速成》一書更是被評為「2008年度全行業暢銷品種」。 前言第1章 電動自行車維修工具、儀器和維修技巧 1.1 電動自行車維修工具 1.1.1 電動自行車維修所需工具 1.1.2 蓄電池修復所需工具 1.2 電動自行車維修儀器與使用技巧 1.2.1 電動自行車維修需要的儀器 1.2.2 電動自行車維修儀器使用技巧 1.3 電動自行車故障診斷步驟與排除技巧 1.3.1 電動自行車故障診斷步驟 1.3.2 電動自行車故障維修方法和技巧第2章 充電器故障排除實例 2.1 外星人48V充電器插上交流插頭,指示燈不亮

2.2 江禾充電器指示燈有時亮有時不亮 2.3 吳新充電器指示燈不亮,充電器內銅箔燒斷 2.4 立馬電動摩托車48V、30Ah充電器交流熔斷器熔絲燒斷 2.5 愛瑪車48V充電器燒壞 2.6 紅旗車36V充電器指示燈閃爍,無電壓輸出 2.7 新蕾車用48V充電器指示燈不亮 2.8 益心48v充電器插上交流電后,指示燈有時亮,有時不亮 2.9 速派奇車用48V充電器,指示燈亮充不進電 2.10 綠源車用48V充電器充電時風機噪聲大第3章 電動機故障排除實例 3.1 飛鴿有刷電動自行車騎行中時快時慢 3.2 英克萊36v無刷電動自行車電動機引線斷,電動機不轉 3.3 速派奇

48V有刷電動車,電動機轉動無力 3.4 立馬電動摩托車電動機斷相,電動機轉動無力 3.5 森地無刷電動車電動機有雜音 3.6 綠源有刷電動自行車電動機磁鋼脫落,電動機有異響 3.7 立馬電動自行車騎行時后輪有雜音 3.8 都市風有刷電動自行車電動機有雜音 3.9 豐收貨運電動三輪車串勵電動機維修第4章 蓄電池故障排除實例 4.1 新日電動摩托車充一次電跑不遠 4.2 愛瑪電動自行車充電時,幾分鍾充電器就轉綠燈 4.3 新蕾電動摩托車充電后騎行里程太短 4.4 雅迪64V電動摩托車更換蓄電池實例 4.5 飛鴿電動自行車蓄電池連線短路 4.6 豪爵摩托車用12V、7Ah蓄

電池修復實例 4.7 綠佳電動車儀表上有電,蓄電池斷格,造成電動自行車無法正常行駛 4.8 大陽電動自行車蓄電池放置一個多月,電動自行車不能行駛 4.9 天能蓄電池使用期1年零2個月修復實例 4.10 新蕾電動摩托車用16V、14Ah蓄電池更換實例 4.11 小刀電動車儀表上有電,轉動轉把電動機不轉 4.12 比德文電動摩托車轉動轉把,儀表上電量突然下降 4.13 速派奇電動自行車新蓄電池裝配實例 4.14 綠源電動摩托車充不進電,轉動轉把儀表上電量迅速下降 4.15 雅迪電動摩托車儀表有電,電動機起動后就停轉 4.16 立馬電動摩托車充電8h充電器仍不轉綠燈 4.17

一組超威12V、12Ah蓄電池修復實例 4.18 尼科尼亞電動摩托車蓄電池更換實例 4.19 小刀電動摩托車轉動轉把后,電動車騎行速度慢,沒有力量 4.20 摩托車用12V、5Ah蓄電池修復實例 4.21 屹峰電動摩托車蓄電池鼓包變形 4.22 都市風電動自行車充電時蓄電池發熱第5章 機械和其他故障排除實例 5.1 雅迪電動自行車前輪有雜音 5.2 愛瑪電動自行車車把騎時擺動 5.3 立馬電動自行車后軸螺帽松動,造成車閘轉動損壞電動機引線 5.4 新日電動自行車后減振斷裂 5.5 小鳥電動摩托車后減振斷裂 5.6 愛瑪電動自行車后車座損壞 5.7 速派奇電動自行車更換帶

鎖隨動閘 5.8 愛瑪電動自行車前剎車失靈 5.9 立馬電動摩托車前剎車線斷裂 5.10 捷安特電動自行車后剎車線芯斷裂 5.11 尼科尼亞電動摩托車后剎車有異響 5.12 立馬電動摩托車后輪輪胎更換 5.13 雅迪電動自行車后剎把損壞 5.14 新蕾電動摩托車輪胎慢性漏氣 5.15 愛瑪電動自行車輪胎扎壞漏氣第6章 電氣故障排除實例 6.1 紅旗有刷電動自行車,打開電源鎖后,電動車飛車 6.2 新日無刷電動車,騎行中電動機實然抱死 6.3 立馬電動摩托車車速低 6.4 愛瑪電動自行車儀表上有電,電動機不轉 6.5 綠源60v無刷電動摩托車控制器燒壞 6.6 新蕾無

刷電動摩托車,打開電源鎖,儀表上有電,但車速低,時走時不走行駛無力 6.7 愛瑪電動自行車用水管沖洗后,電動機有時不轉,有時飛車 6.8 尼科尼亞電動摩托車,用戶騎行中上坡時后座下冒煙 6.9 新日電動摩托車載重騎行中,電動機突然抱死 6.10 雅迪電動自行車儀表上有電,電動機不轉 6.11 小刀電動摩托車報警器的遙控器按鍵不靈敏 6.12 綠源電動車按遙控器鎖住電動機后,報警器無法解鎖 6.13 雅迪電動摩托車上坡或負載過重時,儀表上有電,電動機不轉 6.14 速派奇電動摩托車行駛正常,儀表上電量指示表指針不動 6.15 捷馬電動摩托車車速低 6.16 都市風載重王電動自

行車儀表上有電,電動機不轉 6.17 富士達無刷電動車電動機引線擰斷 6.18 速派奇電動自行車后車閘固定螺栓松動后,車閘轉動損壞電動機引線 6.19 小鳥電動車儀表上有電,電動機不轉 6.20 力可電動車下雨天騎行后,儀表上有電,電動機不轉 6.21 都市風電動自行車儀表上有電,電動機不轉 6.22 小鳥電動摩托車儀表上有電,電動機不轉 6.23 飛鴿電動自行車電動機有阻力並有雜音 6.24 新日豪華型電動車前大燈加裝LED射燈 6.25 飛鴿電動摩托車打開電源鎖,整車無電 6.26 安琪兒電動摩托車打開電源鎖,整車無電 6.27 立馬電動摩托車,關閉電源鎖后,儀表盤上

仍有電量顯示 6.28 捷馬無刷電動車騎行正常,打開大燈開關后,整車無電 6.29 立馬電動摩托車下坡時突然電動機抱死 6.30 安琪兒無刷電動自行車,打開電源鎖,電動機高速旋轉,時而正常,時而不正常 6.31 綠源電動摩托車,行駛正常,大燈、轉向燈、喇叭均不工作第7章 電動三輪車故障排除實例 7.1 金彭老年用電動三輪車儀表上有電壓,電動機不轉 7.2 雙槍貨運電動三輪車剎車失靈 7.3 通勝貨運電動三輪車載重時行駛無力 7.4 豐收貨運電動三輪車(差速)電動機旋轉但車輪不轉 7.5 飛舟貨運電動三輪車儀表上有電,電動機不轉 7.6 通勝貨運電動三輪車儀表上有電,電動機不

轉 7.7 簡易型電動三輪車鏈條有異響,上坡行駛時掉鏈條 7.8 淮海電動三輪車后車閘剎車時抱死 7.9 白天鵝電動三輪車上坡時,控制器冒煙 7.10 雙槍貨動電動三輪車120Ah蓄電池更換實例 7.11 豐收貨運電動三輪車充電機維修實例 7.12 通勝貨運電動三輪車接觸器損壞 7.13 金彭快遞專用電動三輪車加電后不走車 7.14 步步先貨運電動三輪車騎行時有雜音 7.15 力之星客運電動三輪車喇叭不響,智能語音功能失效 7.16 新鴿小折疊電動三輪車充不進電 7.17 大安電動三輪車負載過重造成控制器燒壞 7.18 新能源貨運電動三輪車后橋脫擋 7.19 新馬貨運

電動三輪車行駛中電動機噪聲大 7.20 金彭電動三輪車平路行駛正常,負重上坡時整車無電不正常 6.31 綠源電動摩托車,行駛正常,大燈、轉向燈、喇叭均不工作第7章 電動三輪車故障排除實例 7.1 金彭老年用電動三輪車儀表上有電壓,電動機不轉 7.2 雙槍貨運電動三輪車剎車失靈 7.3 通勝貨運電動三輪車載重時行駛無力 7.4 豐收貨運電動三輪車(差速)電動機旋轉但車輪不轉 7.5 飛舟貨運電動三輪車儀表上有電,電動機不轉 7.6 通勝貨運電動三輪車儀表上有電,電動機不轉 7.7 簡易型電動三輪車鏈條有異響,上坡行駛時掉鏈條 7.8 淮海電動三輪車后車閘剎車時抱死 7.9

白天鵝電動三輪車上坡時,控制器冒煙 7.10 雙槍貨動電動三輪車120Ah蓄電池更換實例 7.11 豐收貨運電動三輪車充電機維修實例 7.12 通勝貨運電動三輪車接觸器損壞 7.13 金彭快遞專用電動三輪車加電后不走車 7.14 步步先貨運電動三輪車騎行時有雜音 7.15 力之星客運電動三輪車喇叭不響,智能語音功能失效 7.16 新鴿小折疊電動三輪車充不進電 7.17 大安電動三輪車負載過重造成控制器燒壞 7.18 新能源貨運電動三輪車后橋脫擋 7.19 新馬貨運電動三輪車行駛中電動機噪聲大 7.20 金彭電動三輪車平路行駛正常,負重上坡時整車無電

基於金鷹演算法之三階混合全橋LLC諧振轉換器效率最佳化

為了解決車用充電器電壓的問題,作者何昆哲 這樣論述:

現今環保意識抬頭,電動車逐漸成為趨勢,用於車用電池充電器等應用場合之功率轉換器需具備大輸出功率、寬輸出電壓以及高功率密度等特點。因此本論文實作一台三階混合全橋LLC諧振轉換器以符合上述應用需求。本論文首先提出一固定工作頻率,調節輔助開關責任週期之控制法,降低控制難度,使電路能工作於二階模式與三階模式,並根據輸出電壓與負載情況進行平滑切換,實現寬輸出電壓與高效率之目標。此外,由於目前文獻中提出之效率最佳化研究皆僅考慮單一負載情境,而轉換器應用於電池充電應用場合時,其負載會隨充電過程而持續改變,針對此一需求,本論文提出一結合LLC諧振轉換器之工作區域分析、損耗分析及金鷹演算法之效率最佳化設計方法

以求解最佳諧振槽設計參數,進而實現最佳綜合效率。本研究最後實際完成一台1250W,輸入電壓500V,輸出電壓360-500V,最大輸出電流2.5A的三階混合全橋LLC諧振轉換器,針對120串ICR-18650M之電池組規格,驗證本研究所提出的控制法與金鷹演算法求得之最佳諧振槽參數的正確性與可行性。由實驗結果可知當輸出電壓500V且輸出80%負載時,所提電路可達最高效率97.3%,且針對實際定電流-定電壓充電法各負載之時間比重進行量測可得綜合效率為95.7%。

圖解蓄電池開蓋維修與修復

為了解決車用充電器電壓的問題,作者劉遂俊 這樣論述:

《圖解蓄電池開蓋維修與修復》全面介紹了鉛酸蓄電池的基礎知識、結構原理、充電技術以及維修保養知識。重點介紹了鉛酸蓄電池常見故障排除與修復技術、鉛酸蓄電池開蓋維修、翻新與組裝技術。書中採用插圖加說明的方式進行了詳細介紹,讀者可以跟著學、跟著做、跟著修,迅速掌握,從而達到速學速修的目的。   本書由電動自行車維修專業老師編寫,實出實用性和易學性,維修人員可隨用隨看,是一本方便快捷、實用性強的蓄電池維修技術資料。適合於蓄電池維修保養人員,初學蓄電池修復與開蓋維修人員,蓄電池售後服務人員及電動車維修人員自學閱讀,也可作為各類職業技術學校的培訓教材。

雙相並聯非接觸式電池充電器研製

為了解決車用充電器電壓的問題,作者賴浩平 這樣論述:

本文針對電動機車72 V電池組研一雙相並聯非接觸式充電器,輸入電壓為200 VDC,電池組由六顆12 V/36 Ah之車用鉛酸電池串聯組成,充電器額定充電電壓與電流分別為86.4 V與6 A。整體架構由兩組非接觸式電能轉換器組成,一次側採用LCC諧振補償架構,二次側則採用LCC與串聯混合式諧振架構來提供定電流與定電壓輸出。兩組一/二次側線圈採疊接方式,在同一空間內進行磁場交連以降低放置線圈所需的空間大小。於雙相並聯架構之二次側輸出電路,經由加入解耦電容來消除二次側線圈間之耦合效應,達到二次側各相電路能穩定接收一次側能量之效果。本研究採用無線射頻通訊介面作為一/二次側間控制訊號之資料傳輸,閉回

路控制器經由微調一次側全橋換流器相移角度來穩定二次側電池充電電壓與電流。最後,分別實際製作額定輸出功率520 W之雙相並聯與單相集中式兩種硬體電路來進行效能比較。經由實驗結果顯示單相集中式系統之最高轉換效率可達89.78%,而雙相並聯系統之最高轉換效率則可達91.00%,且整體雙相並聯系統之轉換效率表現明顯優於單相集中式系統。