積體電路的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

積體電路的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦黃欽勇,黃逸平寫的 矽島的危與機:半導體與地緣政治 和張天蓉的 可以,這很科學:墨子早就懂針孔成像?春秋時期擁有專業外科團隊?圓周率、開平方根、多項式通通難不倒古人!都 可以從中找到所需的評價。

另外網站積體電路布局案件 - 政府資料開放平臺也說明:本表係由經濟部智慧財產局自資料庫擷取歷年積體電路件數申請及發證統計資料供外界參考.

這兩本書分別來自國立陽明交通大學出版社 和崧燁文化所出版 。

國立陽明交通大學 電機工程學系 廖育德所指導 郭浩毅的 應用於移動式 UHF 射頻充電的高效率且寬輸入範圍之電源管理晶片採用自適應負載/輸入功率匹配技術 (2021),提出積體電路關鍵因素是什麼,來自於無線充電、寬輸入範圍整流器、自適應負載、輸入功率匹配、MPPT。

而第二篇論文國立陽明交通大學 電子研究所 陳宏明、劉建男所指導 林力宇的 顯示器驅動晶片之繞線擁擠改善 (2021),提出因為有 實體設計、顯示器驅動、繞線擁擠、標準元件膨脹、模組擺放調整的重點而找出了 積體電路的解答。

最後網站積體電路 - 求真百科則補充:積體電路 (integrated circuit)也稱集成電路是一種微型電子器件或部件。採用一定的工藝,把一個電路中所需的晶體管、電阻、電容和電感等元件及布線互連一起,製作在一 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了積體電路,大家也想知道這些:

矽島的危與機:半導體與地緣政治

為了解決積體電路的問題,作者黃欽勇,黃逸平 這樣論述:

面對地緣政治帶來的風險,台灣半導體產業如何再創奇蹟?     半導體與供應鏈為台灣與國際接軌最重要的戰略武器,而在COVID-19 疫情期間,半導體供需失衡受到前所未有的關注,聚焦台灣的樞紐角色更甚以往。然而,台灣的半導體產業到底是懷璧其罪,還是護國神山?近年國際局勢的瞬息萬變,顛覆了全球的地緣政治,對企業帶來的影響力甚至可能遠大於技術創新與經營變革。     本書兩位作者分別為超過30餘年資歷的科技產業分析師,並為身經百戰的跨界創業與產業專家,另曾主持及帶領過多項政府企業顧問研究專案計劃,以及亞洲供應鏈研究分析團隊,他們透過本書深刻回望半導體的產業變遷,如何在張忠謀、蔡

明介等多位時代英雄帶領之下,成就台灣半導體產業的世界地位,並分析競爭對手如美國英特爾、韓國三星等代表性企業的經營戰略,如何影響著各自發展的腳步。     今時今日,面臨美中兩國的利益衝突,不僅讓位處前線的台灣再聞煙硝味,也必須在與日韓的競合、東協南亞國家的緊追下,思考如何延續半導體產業的現有優勢。本書結合作者多年的產業研究經驗,寫下對時局的觀察,希望提供不同視角的省思,思考「我們應該用什麼角度觀察台灣半導體產業的未來?」   本書特色     1. 以時間為經、地域作緯,宏觀剖析包括美國、中國及日韓、印度等國家的半導體業之過去、現在及未來展望,提供最精闢的產業趨勢觀察,期

能進而回歸提升台灣本土附加價值、提高長期競爭力,方能成為真正的「東方之盾」。     2. 於全球疫情未退、兩岸軍事威脅升高之際,跳脫對半導體產業過於自滿而產生的偏頗,以客觀角度提醒台灣半導體業所面臨的危機與轉機,有助我們思考自身之於全球地緣政治所扮演的角色。     3. 全書並附有大量圖表,輔以理解全球半導體業發展及相互角力之影響。   重磅推薦(依姓氏筆劃順序排列)     林本堅| 中研院院士、國立清華大學半導體研究學院院長    宣明智| 聯華電子榮譽副董事長   張    翼| 國立陽明交通大學國際半導體產業學院院長   焦佑鈞| 華邦電子董

事長兼執行長   陳良基| 前科技部部長、國立臺灣大學名譽教授   簡山傑| 聯華電子總經理     「我強烈推薦所有在半導體產業工作的從業人員、甚至有意投入半導體產業的大學生及研究生都仔細閱讀此書,這將有助於了解台灣半導體產業的全貌及自己工作的重要性。」——張翼(國立陽明交通大學國際半導體產業學院講座教授兼院長)

積體電路進入發燒排行的影片

主持人:阮慕驊
主題:大陸出口增速大幅下滑!全球經濟近頂訊號燈亮了?
節目時間:週一 4:20pm
本集播出日期:2021.08.09


#阮慕驊 #聽阮大哥的 #豐富
阮慕驊新書《錢要投資 賺到退休 賺到自由健康》 https://bit.ly/338oFJL
【財經一路發】專屬Podcast:https://www.himalaya.com/98money168


-----
訂閱【豐富】YouTube頻道:https://www.youtube.com/c/豐富
按讚【豐富】FB:https://www.facebook.com/RicherChannel

應用於移動式 UHF 射頻充電的高效率且寬輸入範圍之電源管理晶片採用自適應負載/輸入功率匹配技術

為了解決積體電路的問題,作者郭浩毅 這樣論述:

近年來由於物聯網的興起,使得環境中佈建的無線感測器之需求快速上升。傳統的無線感測器之能量來源主要藉由化學電池提供,因此要具有較長的生命週期與較小的體積是相當困難的。無線能量擷取技術為透過環境中的能量來驅動電子電路的相關技術,提供無線感測節點所需的能量並且延長電池壽命。RF功率擷取方法是目前最常使用於短距離(數十公尺內)能量傳遞的方法之一,但由於目前的RF能量管理電路的高效率受限於窄小的輸入功率範圍,因此相關的應用依舊十分受限。本論文以應用於物聯網之無線能量擷取系統為出發點,除了使用可重構式技術來改善傳統交直流轉換架構之窄小輸入範圍的能量轉換曲線達成具有大動態輸入範圍之交直流轉換電路外,更藉由

後端包含負載調變電路的MPPT技術與低壓降穩壓器穩定輸出電壓值來提高高輸入功率時整體系統之效率。整體系統以CMOS 0.18μm製程製作,為一個全整合式之積體電路,其寬輸入動態範圍之交直流轉換電路具有54.2%之最佳轉換效率、-19.6dBm之靈敏度與20dB大輸入範圍且高轉換效率(Efficiency > 20%)。高轉換效率的能量擷取與高整合晶片將可以有效地解決過去RF能量擷取的效率不佳及能量浪費等問題,並且可以應用於更多功率以及體積限制的植入式生物感測器系統、智慧感測系統、自動電子收費系統貼片及無線充電等需要無線能量傳輸及穩定輸出電壓值的電路中。

可以,這很科學:墨子早就懂針孔成像?春秋時期擁有專業外科團隊?圓周率、開平方根、多項式通通難不倒古人!

為了解決積體電路的問題,作者張天蓉 這樣論述:

讓我們沿著自然科學史和科學哲學的漫漫長路, 探究這棵如今已經根深葉茂、庇護人類的科學之樹。   ▍古希臘——科學誕生的天選之地   著名物理學家薛丁格(Erwin Schrödinger),將科學發源於古希臘的原因大致歸納為如下3點:   (1)古希臘愛奧尼亞島嶼上以及沿岸自治繁榮的小城邦,實行的是類似於共和制的政治。   (2)航海貿易刺激經濟,商業交換促進技術發展,由此而加速了思想交流,衝擊科學理論的形成。   (3)愛奧尼亞人大多不信教,沒有像巴比倫和埃及那樣的世襲特權的神職等級,有利於倡導獨立思想新時代的興起。   古希臘特定的歷史條件、獨特的地理環境,以及豐厚的文化背景,使其

哲學思想獨具一格,他們的哲學家們喜好研究自然本身的規律,探討的是人與自然的關係,而這正是科學的本質。   ▍你現在才學針孔成像?先秦第一科學家早就會了!   梁啟超在其著作《墨子校釋》的自序評價說:「在吾國古籍中欲求與今世所謂科學精神相懸契者,《墨經》而已矣。」   《墨經》言簡意賅,內容包括邏輯、幾何、力學、光學等方面,例如墨家以實驗事實證明了「光線直線傳播」這個物理規律:   〈經下〉:「景到,在午有端與景長,說在端。」   (譯:影顛倒,光線相交,焦點與影子造成。)   我們小學學的針孔成像的實驗,   原來兩千年前的古人早就懂了!   ▍科學到底是什麼?   科學的英語,來源

於拉丁文的scio,後來於14世紀中期,又演變為現在的寫法,其本意是「知識」、「學問」。中文的「科學」一詞,則是借鑑於日本著名科學啟蒙大師福澤諭吉對英文science的翻譯。   在中文的語義中,科學一詞既可用作名詞,表示反映客觀世界規律的學說理論,又能作為形容詞,表示為探索客觀規律為目的的技術、方法。在科學的要素中,如果除去與其他知識體系的共同部分不談,唯「現代自然科學」所獨有的,有4個不可或缺的主要特徵:   (1)可質疑(questionable)   (2)量化(quantitative)   (3)可被證偽性(falsifiable)及可證實性   (4)普適性(universa

l)。   可質疑、量化、可被證偽、普適性又是什麼呢?   就留給作者娓娓道來,  帶你深入探索科學的無限奧祕!   本書特色   本書以科學家的視角論科學,具體事例多於抽象的概念描述,並在追溯科學史的過程中,簡單探究科學沒有誕生、發展於東方的原因,以及我們應該如何克服自身的不足,才能迎上世界科技的最先進水準。  

顯示器驅動晶片之繞線擁擠改善

為了解決積體電路的問題,作者林力宇 這樣論述:

顯示驅動IC是介於顯示面板及處理器之間,控制畫面的積體電路。為了要滿足市場的需求,顯示驅動IC需要採取高長寬比的設計,因而造成了水平繞線資源的不足。此外,在顯示驅動IC裡的電源線佔用了多層的金屬,也使繞線資源的更加缺乏。這些顯示驅動IC的特性造成了DRC違反的數量增加,使其比起其他積體電路更加難以繞線。我們的研究提出了兩種方法來改善DRC違反的數量。第一種作法是在擺放前限制特定模組的位置,使其能避免因電源線所造成的繞線擁擠,第二種作法則是在繞線密集的區域透過膨脹並重新擺放標準元件來減少繞線需求。從實驗結果可得知我們在所有顯示驅動IC的測資都能達到DRC違反數量的減少。