測電流的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

測電流的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦工業和資訊化部人才交流中心寫的 電機和電源控制中的最新微控制器技術 和何賓的 仿真電子系統設計指南(基礎篇):從半導體、分立組件到ADI集成電路的分析與實現都 可以從中找到所需的評價。

另外網站Fluke 116C 數位萬用表測量電流也說明:它具有HVAC 儀錶所需的各種數位萬用電表測量電流功能,包括用於對HVAC 設備和火焰感測器進行快速故障排查的溫度和微安培測量。 另外還有Fluke 114 電氣測量用萬用電表、 ...

這兩本書分別來自電子工業 和電子工業所出版 。

國立中山大學 光電工程學系研究所 邱逸仁所指導 朱俊燁的 側向電流注入式之高侷限光波導整合絕緣層覆矽半導體雷射 (2021),提出測電流關鍵因素是什麼,來自於異質整合、積體光路、矽光子、薄膜結構、高光侷限、半導體雷射。

而第二篇論文國立成功大學 光電科學與工程學系 許進恭所指導 黃冠智的 光輔助電鍍鎳鉬於n型砷化鎵上作為光陽極之光電化學水分解特性分析 (2021),提出因為有 光電化學、砷化鎵、光腐蝕、腐蝕電位、鎳鉬催化劑的重點而找出了 測電流的解答。

最後網站【分享】機車啟動電流量測與特工則補充:依照Spook 自身量測經驗,一般的機車啟動瞬間消耗電流大於70A以上而一般中階版三用電表電流檔位最高量測範圍為10A以內; 一般...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了測電流,大家也想知道這些:

電機和電源控制中的最新微控制器技術

為了解決測電流的問題,作者工業和資訊化部人才交流中心 這樣論述:

本書全面介紹了當前主流的電機和電源數位控制系統的基本原理、相關控制技術理論和市場應用場景,並針對電機和電源數位控制系統的架構,分享了電機和電源數位控制用的微控制器的基本資源需求,以及市場上主流廠商的技術發展狀況。此外,對基於微控制器的控制軟體程式設計技術及相關調試技術也進行了總結闡述。   除了理論介紹,本書篇幅上著墨於工程實踐的角度出發,介紹基於恩智浦半導體微控制器實現的主流電機類型和電源拓撲的控制案例,分享了實際工程開發中有關微控制器控制的應用經驗和方法。   其中電機控制的應用內容包括永磁同步電機(PMSM)的無位置感測器向量控制(FOC)和有位置感測器的伺服控制、基於轉子磁鏈定向的交流

非同步電機(ACIM)向量控制、無刷直流電機的無位置感測器控制、開關磁阻電機的無位置感測器峰值電流檢測控制、步進電機的位置開環細分控制和位置閉環伺服控制;電源控制部分則包括以圖騰柱無橋式PFC 變換器和LLC DC/DC 諧振變換器為例的AC/DC 控制,以及符合無線充電聯盟(WPC)Qi 標準的15W 感應式無線充電系統的控制。   本書面向已具備一定電機、電源、控制和微控制器基本知識的讀者,可為高校電氣、電力電子專業的研究生和企業工程技術人員提供參考和借鑒。 第1章 電力電子技術應用綜述 001 1.1 電力電子技術發展現狀 002 1.2 市場應用場景 005 1.3

未來發展方向展望 010 1.4 小結 011 第2章 電機和電源控制簡介 013 2.1 常見電機類型及其控制技術 014 2.1.1 直流電機 014 2.1.2 交流電機 016 2.2 常見電力電子變換拓撲 020 2.2.1 整流電路 021 2.2.2 降壓斬波電路 024 2.2.3 升壓斬波電路 025 2.2.4 升降壓斬波電路 025 2.2.5 諧振變換器電路 026 2.3 感應式無線充電技術 029 2.4 小結 031 第3章 電機和電源控制中的微控制器技術介紹 033 3.1 典型電機和電源數位控制系統架構 034 3.2 電機和電源控制中的微控制器技術概況

036 3.2.1 電機和電源控制中的微控制器技術發展現狀 037 3.2.2 電機和電源控制中的微控制器技術發展趨勢 041 3.2.3 恩智浦半導體電機和電源微控制器產品路線規劃 及主要特點 043 3.3 小結 046 第4章 控制軟體程式設計基礎及相關調試技術 049 4.1 數位控制軟體程式設計基礎 050 4.1.1 信號數位化處理 050 4.1.2 變數定標 052 4.1.3 參數標么表示 053 4.2 即時控制軟體架構實現簡介 054 4.2.1 狀態機 054 4.2.2 時序調度機制 057 4.3 即時控制軟體發展及調試 058 4.3.1 即時控制軟體庫的應用

058 4.3.2 即時調試工具 064 4.3.3 相關調試技巧 068 4.4 小結 070 第5章 永磁同步電機的數位控制 071 5.1 永磁同步電機的數學模型 072 5.1.1 三相永磁同步電機數學模型 073 5.1.2 兩相靜止坐標系的數學模型 074 5.1.3 兩相轉子同步坐標系的數學模型 075 5.1.4 座標變換 077 5.2 永磁同步電機的磁場定向控制 078 5.2.1 電流控制環 079 5.2.2 轉速控制環 082 5.3 轉矩電流比和弱磁控制 083 5.3.1 轉矩電流比控制 084 5.3.2 弱磁控制 087 5.4 無位置感測器控制 092 5

.4.1 基於反電動勢的位置估計 092 5.4.2 基於高頻信號注入的位置估計 096 5.4.3 基於定子磁通的位置估計 099 5.5 電機控制所需的微控制器資源 102 5.5.1 脈衝寬度調製器(PWM)  103 5.5.2 模/數轉換器(ADC)  105 5.5.3 正交解碼器(DEC)  105 5.5.4 計時器(Timer)  106 5.5.5 PWM 和ADC 硬體同步 106 5.6 典型永磁同步電機控制方案 107 5.6.1 帶位置感測器的伺服控制 107 5.6.2 無位置感測器的磁場定向控制 109 5.6.3 典型案例分析―風機控制 110 5.7 小結

125 第6章 無刷直流電機的數位控制 127 6.1 無刷直流電機模型 128 6.1.1 無刷直流電機的本體結構 128 6.1.2 無刷直流電機的數學模型 129 6.2 六步換相控制及所需的微控制器資源 131 6.2.1 無刷直流電機六步換相控制的基本原理 131 6.2.2 六步換相PWM 調製方式及其對電壓和電流的影響 133 6.2.3 六步換相無感測器控制 138 6.2.4 六步換相控制所需的微控制器資源 140 6.3 典型無刷直流電機控制方案 141 6.3.1 基於KE02 的無刷直流電機無位置感測器控制 142 6.3.2 基於MC9S08SU16 的無人機電調解

決方案 148 6.4 小結 152 第7章 開關磁阻電機的數位控制 153 7.1 開關磁阻電機的基本工作原理 154 7.1.1 電機結構 154 7.1.2 電磁轉矩的產生 155 7.1.3 繞組反電動勢 157 7.2 兩相SRM 的數位控制 158 7.2.1 PWM 控制下的繞組導通模式 159 7.2.2 電壓控制方法 160 7.2.3 檢測電流峰值的無位置感測器控制方法 161 7.2.4 電機從靜止開始起動 163 7.2.5 電機從非靜止時開始起動 166 7.2.6 兩相SRM 數位控制所需的微控制器資源 166 7.3 典型方案分析―高速真空吸塵器 167 7.3

.1 系統介紹 167 7.3.2 相電流與母線電壓的檢測 170 7.3.3 電機的控制流程 175 7.3.4 峰值電流的檢測方法 184 7.4 小結 185 第8章 交流感應電機的數位控制 187 8.1 交流感應電機模型 188 8.1.1 交流感應電機的本體結構 188 8.1.2 交流感應電機的控制方法概述 190 8.1.3 交流感應電機的數學模型 191 8.2 轉子磁鏈定向控制 194 8.2.1 轉矩電流比控制 196 8.2.2 交流感應電機弱磁控制 198 8.2.3 定子電壓解耦 199 8.2.4 帶位置感測器時轉子磁鏈位置估算 200 8.2.5 無位置感測器

控制 201 8.3 典型交流感應電機控制方案 206 8.3.1 控制環路介紹 207 8.3.2 低成本電流及轉速採樣實現方案 209 8.3.3 轉子時間常數校正 214 8.3.4 應用軟體設計 215 8.3.5 系統時序設計 216 8.4 小結 218 第9章 步進電機的數位控制 219 9.1 步進電機工作原理 220 9.1.1 步進電機的結構簡介 220 9.1.2 步進電機的工作原理簡介 221 9.2 位置開環的細分控制及所需的微控制器資源 223 9.2.1 細分控制 223 9.2.2 驅動電路和PWM 方法 225 9.2.3 步進電機位置開環的控制結構 228

9.3 位置閉環的向量控制及所需的微控制器資源 229 9.3.1 步進電機向量控制 229 9.3.2 步進電機弱磁控制 231 9.3.3 步進伺服的典型控制結構 234 9.3.4 轉速計算原理及結合微控制器的應用 235 9.4 典型步進電機控制方案 239 9.5 小結 245 第10章 AC/DC 變換器的數位控制 247 10.1 AC/DC 變換器工作原理 248 10.1.1 PFC 基本工作原理 249 10.1.2 LLC 諧振變換器基本工作原理 251 10.2 PFC 的數位控制 254 10.2.1 控制策略 254 10.2.2 電流控制器設計 255 10.

2.3 PFC 數位控制所需的微控制器資源 257 10.3 LLC 的數位控制 259 10.3.1 控制策略 259 10.3.2 LLC 諧振變換器數位控制所需的微控制器資源 262 10.4 典型案例分析―高效伺服器電源 263 10.4.1 圖騰柱無橋PFC 系統實現 264 10.4.2 LLC 諧振變換器系統實現 268 10.5 小結 274 第11章 感應式無線充電的數位控制 275 11.1 感應式無線充電工作原理 276 11.1.1 能量的傳輸方式 277 11.1.2 通信方式及解調簡介 279 11.2 無線充電標準Qi  281 11.2.1 通信方式詳述 28

1 11.2.2 系統控制 283 11.3 Qi 標準感應式無線充電微控制器 289 11.3.1 無線充電微控制器介紹 289 11.3.2 Qi 標準無線充電發射器硬體模組 291 11.3.3 無線充電發射器軟體架構及重要功能實現 293 11.3.4 無線充電重要功能的數位實現方式 296 11.4 無線充電典型應用 301 11.4.1 消費及工業類無線充電發射器 301 11.4.2 車載無線充電發射器 303 11.4.3 恩智浦半導體無線充電發射器主要模組 305 11.4.4 恩智浦半導體無線充電接收器簡介 312 11.4.5 系統主要性能指標 315 11.5 小結 3

18 參考文獻 319

測電流進入發燒排行的影片

►國家通訊傳播委員會行動通訊電磁波安全宣導網頁專區:https://memf.ncc.gov.tw/
►衛生福利部國民健康署電磁波宣導專區:https://www.hpa.gov.tw/Pages/List.aspx?nodeid=418
►環保署之非屬原子能游離輻射管制網:https://nonionized.epa.gov.tw/
►基地臺電磁波免費量測專線:0800-580-010

► 訂閱二伯&蔡波能:https://pros.is/2UncleYT
► 訂閱蔡桃貴:https://pse.is/TsaiGray2018
► 訂閱蔡阿嘎Life頻道:http://pics.ee/AGaLife
► 蔡阿嘎主頻道:http://pics.ee/AGaU2

► 蔡阿嘎FaceBook:http://pics.ee/AGaFB
► 加LINE好友:https://pse.is/GaLine
► Instagram:http://pics.ee/AGaIG


#蔡阿嘎 #電流急急棒 #電磁波 #國家通訊傳播委員會 #衛生福利部國民健康署


聯絡蔡阿嘎:
[email protected]

側向電流注入式之高侷限光波導整合絕緣層覆矽半導體雷射

為了解決測電流的問題,作者朱俊燁 這樣論述:

現下,積體光路與矽光子逐漸成熟,但其於主動端的特性並不突出,異質整合技術與三五族半導體之主動元件並達到高能源效率愈發重要,其中光波導結構是所有半導體光電元件相當重要的一部份,擁有光與電的高侷限能力且低製作成本及簡易製程的波導是大家所追求的。故我們利用先進的概念,設計一高侷限之側向電流注入式薄膜式結構,並使用實驗室之間接貼合技術,以僅約 40nm 之 BCB 異質整合三五族與絕緣層覆矽。過去本實驗室已以此結構製作出小尺寸、高消光比之異質整合的電致吸收調變器,此特殊波導表現強量子侷限史塔克效應。在長度 180μm 下的波導,消光比可達一伏特 11dB,但側向電流注入與光場型態的表現並不傑出,須透

過製程手段改善。因此在本論文中,我們則以此設計概念,製作出高侷限之側向電流注入式薄膜雷射,在不犧牲被動層的光場佔比下,模擬主動層的光侷限可達傳統垂直注入式的 1.4 倍,於矽的光場佔比亦被大幅提升,增益提高拉升能源效率,未來若製作 DFB 雷射亦有效控制光柵耦合效率。我們亦製作 TLM 電極測試半導體與金屬接觸特性,使我們的電性顯著改善以利電流注入。製程上,我們優化了實驗室的間接貼合技術,使良率大幅提升,並能承受長時間高溫以利後續製程;而後以製程手段及選擇性底切蝕刻製作出我們的側向電流注入式結構,使電流良好侷限入主動區,並以低折射率材料 BCB 絕緣及包圍形成高侷限光波導,最後沉積共平面電極以

便與矽平台整合,完成元件製作。接著,我們量測電性並進行快速熱退火優化,檢測半導體與金屬接觸;接著量測電流與光功率關係,在連續波電流下,臨界電流分別在長度 1150µm 及 1350µm 長度時為 80mA 與 110mA,最大輸出功率為 0.77mW 與 0.7mW,亦檢測電致發光頻譜,以連續波呈現半導體雷射表現 (Lasing)。後續針對不同蝕刻包覆層深度的光波導進行光電流頻譜與偏壓相依穿透率量測,兩者消光比差異高達 6dB;同時進行遠場量測,結果與模擬之場形與發散角皆相對應,製作成功且證實此設計之可行性及此特殊波導的光侷限性。

仿真電子系統設計指南(基礎篇):從半導體、分立組件到ADI集成電路的分析與實現

為了解決測電流的問題,作者何賓 這樣論述:

本書從最基本的半導體PN結開始,以二極管、雙極結型晶體管、金屬氧化物半導體場效應管,以及美國TI公司的集成運算放大器、集成功率放大器、集成線性低壓降電源芯片、集成開關電源芯片為主線,系統介紹了半導體和PN結特性、半導體二極管的特性和分析、二極管電路的設計和分析、雙極結型晶體管的特性和分析、雙極結型晶體管放大電路應用、雙極結型晶體管電路反饋原理及穩定分析、金屬氧化物半導體場效應管特性和電路分析、金屬氧化物半導體場效應管放大電路應用、運算放大器電路的設計和分析、集成差動放大器的原理和分析、運算放大器的性能指標、運算放大器電路穩定性分析、高速放大器的原理和分析、有源濾波器的原理和設計、功率放大器的分

析和設計、振盪器的特性和分析、電源管理器的原理和應用、模擬-數字轉換器的原理及應用、數字-模擬轉換器的原理及應用等內容。本書的一大特色是將模擬電子系統理論知識和SPICE電路仿真進行系統化融合,通過理論計算及SPICE仿真結果,詮釋了模擬電子系統的本質;本書的另一大特色是通過與美國TI公司和美國NI公司的產、學、研深度合作,將最新的模擬電子設計理論和設計方法引入書中,使得本書內容能與時俱進,將更精彩的內容呈現給廣大讀者。本書適用於從事模擬系統設計的工程師,尤其適用於從事TI集成電路設計的工程師。同時,本書也可以作為高等學校模擬電子技術基礎課程的教學參考用書。何賓,著名的嵌入式技術和EDA技術專

家,長期從事電子設計自動化方面的教學和科研工作,與全球多家知名的半導體廠商和EDA工具廠商大學計划保持緊密合作。目前已經出版嵌入式和EDA方面的著作近30部,內容涵蓋電路仿真、電路設計、可編程邏輯器件、數字信號處理、單片機、嵌入式系統、片上可編程系統等。典型的代表作有《Xilinx FPGA設計權威指南》、《AltiumDesigner13.0電路設計、仿真與驗證權威指南》、《Xilinx FPGA數字設計-從門級到行為級的雙重描述》、《Xilinx FPGA數字信號處理權威指南-從HDL、模型到C的描述》、《模擬與數字系統協同設計權威指南-Cypress集成開發環境》、《STC單片機原理及應

用》、《AltiumDesigner15.0電路仿真、設計、驗證與工藝實現權威指南》、《STC單片機C語言程序設計》。 第1章模擬電子技術緒論1.1電子技術的發展歷史1.2模擬電子技術的目標1.2.1模擬電子技術的基礎地位1.2.2模擬電子技術的知識點結構1.2.3模擬電子技術的研究角度1.3模擬電子系統的評價和分析方法1.3.1理論分析方法類型1.3.2理論分析方法的實質1.3.3實際測試第2章半導體和PN結特性2.1半導體材料2.1.1N型雜質2.1.2P型雜質2.1.3多子和少子2.1.4費米函數2.1.5載流子濃度2.2零偏置PN結2.2.1內建結電勢2.2.2電場

分布2.2.3結電勢分布2.2.4空間耗盡區寬度2.3正偏PN結2.3.1耗盡區寬度2.3.2少子電荷分布2.4反偏PN 結2.4.1耗盡區寬度2.4.2結電容2.5結電流密度2.6溫度依賴性2.7高頻交流模型2.7.1耗盡電容2.7.2擴散電容2.7.3正偏模型2.7.4反偏模型第3章半導體二極管的特性和分析3.1二極管的符號和分類3.1.1二極管的符號3.1.2二極管的分類3.2二極管電壓和電流特性3.2.1測試電路構建和分析3.2.2查看和分析SPICE網表3.2.3二極管SPICE模型描述3.2.4二極管正偏電壓-電流特性分析3.2.5二極管反偏電壓-電流特性分析3.2.6二極管電壓-

電流線性化模型3.3二極管溫度特性3.3.1執行二極管溫度掃描分析3.3.2繪制和分析二極管溫度特性圖3.4二極管頻率特性3.4.1波特圖工具的原理3.4.2波特圖使用說明3.4.3二極管頻率特性分析3.5二極管額定功率特性3.6發光二極管及其特性3.7齊納二極管及其特性3.7.1電壓電流特性3.7.2電源管理器的設計第4章二極管電路的設計和分析4.1二極管整流器4.1.1半波整流4.1.2全波整流4.1.3平滑整流器輸出4.2二極管峰值檢測器4.2.1二極管峰值檢測器原理4.2.2包絡檢波器實現4.3二極管鉗位電路4.4二極管斬波器4.4.1二極管斬波器原理4.4.2二極管斬波器應用4.5二

極管倍壓整流器4.6壓控衰減器第5章雙極結型晶體管的特性和分析5.1晶體管基本概念5.2雙極結型晶體管符號5.3雙極結型晶體管SPICE模型參數5.4雙極結型晶體管工作原理5.4.1雙極結型晶體管結構5.4.2電壓、電流和電荷控制5.4.3晶體管的α和β5.4.4BJT工作區域5.5雙極結型晶體管輸入和輸出特性5.5.1輸入特性5.5.2輸出特性5.6雙極結型晶體管電路模型及分析方法5.6.1直流模型5.6.2大信號模型5.6.3厄爾利效應5.6.4小信號模型5.7密勒定理及其分析方法5.7.1密勒定理及其推導5.7.2密勒定理的應用5.7.3密勒效應5.8雙極結型晶體管的直流偏置5.8.1有

源電流源偏置5.8.2單基極電阻偏置5.8.3發射極電阻反饋偏置5.8.4射極跟隨器偏置5.8.5雙基極電阻偏置5.8.6偏置電路設計5.9共發射極放大器5.9.1有源偏置共射極放大器5.9.2電阻偏置共射極放大器5.10共集電極放大器5.10.1有源偏置射極跟隨器5.10.2電阻偏置射極跟隨器5.11共基極放大器5.11.1輸入電阻Ri5.11.2無負載電壓增益Avo5.11.3輸出電阻Ro5.12達林頓對晶體管5.13直流電平移位和放大器5.13.1電平移動方法5.13.2電平移位的直流放大器5.14雙極結型晶體管電路的頻率響應5.14.1高頻模型5.14.2BJT頻率響應5.15BJT放

大器的頻率響應5.15.1共發射極BJT放大器5.15.2共集電極BJT放大器5.15.3共基極BJT放大器第6章雙極結型晶體管放大電路應用6.1BJT多級放大器及頻率響應6.1.1電容耦合6.1.2直接耦合6.1.3級聯晶體管6.1.4頻率響應6.2BJT電流源原理6.2.1基本電流源6.2.2改進型基本電流源6.2.3Widlar電流源6.2.4共射-共基電流源6.2.5威爾遜電流源6.2.6多重電流源6.2.7零增益放大器6.2.8穩定電流源6.3BJT差分放大器原理6.3.1采用阻性負載的BJT差分對6.3.2采用基本電流鏡有源負載的BJT差分放大器6.3.3采用改進電流鏡的差分放大器

6.3.4共射極-共基極差分放大器6.3.5差分放大器頻率響應第7章雙極結型晶體管電路反饋原理及穩定分析7.1放大器反饋機制類型7.2放大器反饋特性7.2.1閉環增益系數7.2.2頻率響應7.2.3失真7.3放大器反饋結構7.3.1串聯-並聯反饋結構7.3.2串聯-串聯反饋結構7.3.3並聯-並聯反饋結構7.3.4並聯-串聯反饋結構7.4放大器反饋分析7.4.1串聯-並聯反饋結構7.4.2串聯-串聯反饋結構7.4.3並聯-並聯反饋結構7.4.4並聯-串聯反饋結構7.5放大器穩定性分析7.5.1閉環頻率和穩定性7.5.2瞬態響應和穩定性7.5.3閉環極點和穩定性7.5.4奈奎斯特穩定准則7.5.

5相對穩定性判定7.5.6相位裕度的影響7.5.7波特圖分析穩定性方法第8章金屬氧化物半導體場效應管特性和電路分析8.1金屬氧化物半導體場效應管基礎8.1.1金屬氧化物半導體場效應管概述8.1.2金屬氧化物場效應晶體管符號8.1.3金屬氧化物場效應管的基本概念8.1.4MOSFET的SPICE模型參數8.2增強型MOSFET8.2.1內部結構8.2.2工作模式8.2.3工作特性8.3耗盡型MOSFET8.3.1內部結構8.3.2工作模式8.3.3工作特性8.4MOSFET低頻模型8.4.1直流模型8.4.2小信號模型8.4.3小信號分析8.5MOSFET直流偏置8.5.1MOSFET偏置電路原

理8.5.2MOSFET偏置電路設計8.6共源極放大器8.6.1采用電流源負載的共源極放大器8.6.2采用增強型MOSFET負載的共源極放大器8.6.3采用耗盡型MOSFET負載的共源極放大器8.6.4采用電阻負載的共源極放大器8.7共漏極放大器 8.7.1有源偏置的源極跟隨器8.7.2電阻偏置的源極跟隨器8.8共柵極放大器8.9直流電平移位和放大器8.9.1電平移動方法8.9.2電平移位的MOSFET放大器8.10MOSFET放大器頻率響應8.10.1MOSFET高頻模型8.10.2共源極放大器頻率響應8.10.3共漏極放大器頻率響應8.10.4共柵極放大器頻率響應第9章金屬氧化物半導體場效

應管放大電路應用9.1MOSFET多級放大器及頻率響應9.1.1電容耦合級聯放大器9.1.2直接耦合放大器 9.1.3共源-共柵放大器9.2MOSFET電流源原理9.2.1基本電流源9.2.2改進型基本電流源9.2.3多重電流源9.2.4共源-共柵電流源9.2.5威爾遜電流源9.2.6零增益放大器9.2.7穩定電流源9.3MOSFET差分放大器原理9.3.1NMOSFET差分對9.3.2采用有源負載的MOSFET差分對9.3.3共源-共柵MOSFET差分放大器9.4耗盡型MOSFET差分放大器原理9.4.1采用阻性負載的耗盡型MOSFET差分對9.4.2采用有源負載的耗盡型MOSFET差分對第

10章運算放大器電路的設計和分析10.1集成運算放大器的原理10.1.1集成運放的內部結構10.1.2集成運放的通用符號10.1.3集成運放的簡化原理10.2理想運算放大器模型10.2.1理想運算放大器的特點10.2.2放大器「虛短」和「虛斷」10.2.3疊加定理10.3理想運算放大器的分析10.3.1同相放大器10.3.2反相放大器10.4運算放大器的應用10.4.1電壓跟隨器10.4.2加法器10.4.3積分器10.4.4微分器10.4.5半波整流器10.4.6全波整流器10.5單電源供電運放電路10.5.1單電源運放10.5.2運算放大電路的基本偏置方法10.5.3其他一些基本的單電源供

電電路第11章集成差動放大器的原理和分析11.1差分放大器的基本概念11.2差分放大器11.3儀表放大器11.4電流檢測放大器11.4.1低側電流測量方法11.4.2高測電流檢測方法11.5全差分放大器11.5.1全差分放大器原理11.5.2差分信號源匹配11.5.3單端信號源匹配11.5.4輸入共模電壓第12章運算放大器的性能指標12.1開環增益、閉環增益和環路增益12.2放大器直流精度12.2.1放大器輸入端直流參數指標12.2.2放大器輸出端直流參數指標12.3放大器交流精度12.3.1增益帶寬積12.3.2壓擺率12.3.3建立時間12.3.4總諧波失真加噪聲12.4其他指標12.4.

1共模抑制比12.4.2電源噪聲抑制比12.4.3電源電流12.4.4運放噪聲12.5精密放大器指標12.5.1TI精密運算放大器12.5.2精密放大器選型步驟第13章運算放大器電路穩定性分析13.1運放電路穩定性分析方法13.2Aol和1/β的計算方法13.3外部寄生電容對穩定性的影響13.3.1負載電阻影響的瞬態分析13.3.2負載電阻影響的交流小信號分析13.4修改Aol的補償方法13.4.1電路的瞬態分析13.4.2電路的交流小信號分析13.5修改1/β的補償方法13.5.1電路的瞬態分析13.5.2電路的交流小信號分析第14章高速放大器的原理和分析14.1高速放大器的關鍵指標 14.

1.1帶寬14.1.2壓擺率14.1.3建立時間14.1.4THD+N和運放的位數14.2Bipolar和FET型高速放大器 14.3電壓反饋、電流反饋和去補償型高速放大器14.3.1電壓反饋和電流反饋放大器的原理14.3.2電壓反饋放大器和電流反饋放大器的區別:帶寬和增益 14.3.3電壓反饋放大器和電流反饋放大器的區別:反饋電阻的取值 14.3.4電壓反饋放大器和電流反饋放大器的區別:壓擺率 14.3.5電壓反饋放大器和電流反饋放大器的選擇14.3.6去補償電壓反饋放大器 14.4壓控增益放大器應用 第15章有源濾波器的原理和設計15.1有源和無源濾波器15.2有源濾波器分類15.3有源濾

波器模型研究方法15.4一階濾波器及其特性15.4.1低通濾波器15.4.2高通濾波器15.4.3帶通濾波器15.4.4帶阻濾波器15.5雙二次函數15.5.1貝塞爾響應 15.5.2巴特沃斯響應 15.5.3契比雪夫響應15.6Sallen-Key濾波器15.6.1通用形式15.6.2低通濾波器15.6.3高通濾波器15.6.4帶通濾波器15.7多重反饋濾波器15.7.1低通濾波器15.7.2高通濾波器15.7.3帶通濾波器15.8Bainter陷波濾波器15.9全通濾波器15.9.1一階全通濾波器15.9.2二階全通濾波器15.10開關電容濾波器15.10.1開關電容電阻15.10.2開關

電容積分器15.10.3通用開關電容濾波器15.11單電源供電濾波器設計15.12濾波器輔助設計工具第16章功率放大器的分析和設計16.1功率放大器的類型16.2功率晶體管16.3A類功率放大器的原理及分析16.3.1射極跟隨器16.3.2基本的共射極放大器16.3.3采用有源負載的共射極放大器16.3.4變壓器耦合負載共射極放大器16.4B類功率放大器的原理及分析16.4.1互補推挽放大器16.4.2變壓器耦合負載推挽放大器16.5AB類功率放大器的原理及分析16.5.1轉移特性16.5.2輸出功率和效率16.5.3采用二極管的偏置16.5.4采用二極管和有源電流源的偏置16.5.5采用VB

E乘法器的偏置16.5.6准互補AB類放大器16.5.7變壓器耦合AB類放大器16.6C類功率放大器的原理及分析16.7D類功率放大器的原理及分析16.8E類功率放大器的原理及分析16.9功率運算放大器的類型和應用16.9.1功率運算放大器的類型16.9.2功率運算放大器的應用16.9.3功率運放功耗16.9.4功率運放熱考慮16.9.5功率運放散熱設計第17章振盪器的特性和分析17.1振盪器原理17.1.1振盪條件分析17.1.2頻率穩定性分析17.1.3幅度穩定性分析17.2音頻振盪器17.2.1移相振盪器17.2.2正交振盪器17.2.3三相振盪器17.2.4文氏橋振盪器17.2.5環形

振盪器17.3射頻振盪器17.3.1科爾皮茲振盪器17.3.2哈特萊振盪器17.3.3兩級MOS振盪器17.4晶體振盪器17.5硅振盪器17.6有源濾波器調諧振盪器第18章電源管理器的原理和應用18.1線性電源管理器18.1.1線性電源管理器的內部結構18.1.2負載電流對輸入和輸出壓差的影響18.1.3輸出電壓與輸入電壓和負載電流變化關系18.1.4LDO電源管理器的效率18.1.5LDO電源管理器反饋補償18.1.6LDO電源抑制比18.2開關電源管理器18.2.1電感和電容的基本概念18.2.2理想降壓轉換器的原理和結構18.2.3理想升壓轉換器的原理和結構18.2.4理想降壓-升壓轉換

器的原理和結構第19章模擬-數字轉換器的原理及應用19.1數模混合系統結構19.2ADC的原理19.2.1ADC的基本原理19.2.2量化誤差與分辨率19.2.3采樣率19.3ADC的性能指標19.3.1靜態特性19.3.2動態特性19.4ADC的類型和原理19.4.1逐次逼近寄存器型ADC的原理及應用19.4.2Δ-?型ADC的原理及應用19.4.3流水線型ADC的原理及應用19.5ADC數字接口類型19.5.1I2C接口 19.5.2SPI接口 19.5.3LVDS接口19.6ADC參考輸入源19.6.1串聯型電壓基准19.6.2並聯型電壓基准19.7全差分放大器和ADC接口設計19.8小

結第20章數字-模擬轉換器的原理及應用20.1DAC的原理及信號重構20.1.1DAC的原理20.1.2模擬信號的重建20.2DAC的性能指標20.2.1分辨率20.2.2滿量程范圍20.2.3靜態參數20.2.4動態參數20.3DAC器件類型和原理20.3.1電阻串型20.3.2R-2R型20.3.3乘法型20.3.4電流引導型20.3.5數字電位器20.3.6Δ-?型DAC20.4脈沖寬度調制 20.4.1占空比分辨率 20.4.2諧波失真 20.4.3模擬濾波器的設計20.5選型原則參考文獻

光輔助電鍍鎳鉬於n型砷化鎵上作為光陽極之光電化學水分解特性分析

為了解決測電流的問題,作者黃冠智 這樣論述:

本實驗使用n型砷化鎵半導體,為一個小能隙的半導體,理論上能吸收大部分的太陽能能量,在透過施加偏壓調整能帶相對於水氧化電位的位置後,能有效的將太陽能轉換至化學能。但以n型砷化鎵為光電陽極下極易腐蝕,如何將砷化鎵表面的光生電洞送至電解液便至關重要。因此本篇論文的研究方向是先分析砷化鎵在中性 (0.1M Na2SO4)、鹼性(0.1M KOH)電解液中的特性。了解其腐蝕機制、腐蝕電位和腐蝕產物,藉此分析如何有效抑制腐蝕並同時進行水分解。而後在光輔助電鍍NiMo催化劑修飾砷化鎵表面,進而提升水氧化能力並抑制光腐蝕。關鍵詞:光電化學、砷化鎵、光腐蝕、腐蝕電位、鎳鉬催化劑