散熱鰭片的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

散熱鰭片的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦林唯耕寫的 電子構裝散熱理論與量測實驗之設計(二版) 和小倉茂德的 F1小詞典 萬用豆知識4都 可以從中找到所需的評價。

另外網站空壓機散熱鰭片清潔 - 阜康欣實業有限公司也說明:VIDEOS. HOME · VIDEOS. 空壓機散熱鰭片清潔. 分享到 ...

這兩本書分別來自清華大學 和楓書坊所出版 。

國立陽明交通大學 機械工程系所 王啟川所指導 張芷瑄的 高功率模組水冷散熱器熱流設計與分析研究 (2021),提出散熱鰭片關鍵因素是什麼,來自於高功率、冷板、水冷、模擬。

而第二篇論文國立中央大學 機械工程學系在職專班 鍾志昂所指導 林鴻吉的 通訊設備之熱傳分析與改良研究 (2021),提出因為有 自然對流、熱分析、田口法、FloTHERM、熱輻射、Minitab的重點而找出了 散熱鰭片的解答。

最後網站散熱鰭片的價格推薦第8 頁- 2021年11月| 比價比個夠BigGo則補充:散熱鰭片 價格第8 頁推薦共1455筆商品。包含1387筆拍賣、68筆商城.快搜尋「散熱鰭片」找出哪裡買、現貨推薦與歷史價格一站比價,最低價格都在BigGo!

接下來讓我們看這些論文和書籍都說些什麼吧:

除了散熱鰭片,大家也想知道這些:

電子構裝散熱理論與量測實驗之設計(二版)

為了解決散熱鰭片的問題,作者林唯耕 這樣論述:

  林唯耕教授專業著作《電子構裝散熱理論與量測實驗之設計》於2020年全新改版,修正初版中的錯誤,並增加了全新的章節〈如何測量熱管、均溫板或石墨片的有效Keff值〉。   本書針對一般業界或專業領域人士所欲了解的部分提供詳盡介紹,至於一般熱交換器製造、鰭片設計等,由於坊間已有許多專業書籍,本書將不再贅文說明。本書第1章簡單介紹電子構裝散熱,特別是CPU散熱歷史的演變。第2章在必須應用到的熱傳重要基本觀念上做基礎的介紹,以便讓非工程領域的人亦能理解,了解熱之性質與物理行為後才能知道如何散熱,以及散熱之方法、工具、量測及理論公式。第3章旨在敘述流力的基本觀念,重要的是如何計算

壓力阻力,從壓力阻力才能算出空氣流量。第4章探討一般封裝IC後之接端溫度TJ之理論解法。第5章討論一些實例的工程解法,包括自然對流、強制對流下溫升之計算,簡介風扇及風扇定律、風扇性能曲線、鰭片之阻抗曲線,以及如何利用簡單的區域分割理論求取鰭片之阻力曲線。第6章至第9章則注重實務經驗,尤其是實驗設計,其中包括理論設計及實驗之技巧。第6章說明如何設計一個測量熱阻的測試裝置(Dummy heater)。第7章解說AMCA規範下之風洞設計如何測量風扇性能曲線及Cooler系統(或鰭片)之阻抗曲線。第8章以熱管之理論與實務為主,逐一介紹其中重要之參數及標準性能,並說明量測之原理。第9章對LED散熱重要之

癥結做了觀念上的說明,注重於LED之內部積熱如何解決。二版新增的第10章則詳細敘述如何利用Angstrom方法量測熱管、均溫板、石墨片、石墨稀等物質之熱傳導係數K值。  

散熱鰭片進入發燒排行的影片

歡迎收看 Tech a Look !!! 來開箱微星 MSI 最近推出的遊戲Mini-ITX小板 Z87I Gaming AC ,隨著迷你電腦使用者越來越多,各家主機板大廠也紛紛在尺寸小而且空間有限的Mini-ITX板上加入電競元素,這款 Z87I Gaming AC 比先前的Z87I還要高階一些並支援超頻功能,搭載 Killer 網路晶片與 Audio Boost 音效強化技術,並內建WiFi 802.11ac,傳輸效率可高達867Mbps。雖然礙於整體尺寸的關係,移除了板上快速按鍵,但是主機板之供電散熱設計方面讓人眼睛一亮,則是採用3D立體龍型散熱鰭片,而Z87晶片組上也有一樣的龍紋圖形噢!!!
想知道更多關於 MSI Z87I Gaming AC 的詳細測試資訊請上友站:
http://www.coolaler.com/content.php/2866-小鋼炮套裝-MSI-Z87I-Gaming-AC-加上-GTX-760-mini-ITX-Gaming/view/3

如果你還沒訂閱我們頻道,別忘了按下去紅色的訂閱鈕!!!!!
讓Tech a Look天天和你在一起!!!!!

官方網站:http://www.techalook.com.tw/?p=1850
Facebook:http://www.facebook.com/techalook.com.tw
G+:https://plus.google.com/+TechaLookTw/
Twitter: http://twitter.com/TechaLook
微博: http://weibo.com/u/3756536004
優酷: http://i.youku.com/TechaLook

高功率模組水冷散熱器熱流設計與分析研究

為了解決散熱鰭片的問題,作者張芷瑄 這樣論述:

為解決絕緣柵雙極型電晶體(Insulated Gate Bipolar Transistor, IGBT)因高發熱量所產生的過熱問題,本研究將透過模擬軟體探討四種散熱模型的熱流表現,以水冷的方式帶走各高功率模組2.7 kW的發熱量。由於液態水的溫度範圍非常適合電子模組運作,為避免水的沸騰,本研究目標是讓模型最高溫低於攝氏90度。研究模型為尺寸約35*13.5*5立方公分的冷卻套箱,內部流場區域約32*10.5*3立方公分,散熱鰭片有之字、圓形陣列及兩種擾流子四種設計。本研究先分別對各模型的發熱面、鰭片在流場、溫度場中做流速測試,找出各模型最高溫約90 ℃的對應流速,再由模擬結果對原始模型的幾

何做一些修改來提升其散熱表現。在之字模型上,流速0.078 kg/s,最高溫94.7 ℃;在圓形陣列模型上,流速0.140 kg/s,最高溫96.7 ℃;在擾流子一模型上,流速0.031 kg/s,最高溫72.1 ℃;在擾流子二模型上,流速0.031 kg/s,最高溫80.8 ℃。相較之下,擾流子真的對模型的散熱及溫度分布有實質上的提升。對模型幾何稍作修改之後,最佳之字模型上,流速0.078 kg/s,最高溫90.7 ℃;最佳圓形陣列模型上,流速0.122 kg/s,最高溫88.9 ℃;最佳擾流子二的模型上,流速0.031 kg/s,最高溫下降到75.0 ℃。之後再藉泵浦功率來衡量各模型(包含

發熱面、鰭片、水箱)在熱流場中各流速的最高溫與其所對應的壓降,其中擾流子一以0.017 kg/s的流速達到四個模型中最低的最高溫77.8 ℃、最小的總壓降67.5 Pa,為本研究中所找到的最佳散熱鰭片模型。最後,用擾流子一模型堆疊成三相的散熱模型,三個相同的水箱連接到相同的總水流進出口,模擬不同的總出口方向。在總流速0.093 kg/s,下進下出的最高溫58.4 ℃,總壓降297 Pa;下進上出的最高溫則是57.7 ℃,總壓降298 Pa。在總壓降幾乎相同的情況下,下進上出為溫度分布相對均勻的設計,故下進上出為三相高功率驅動器模組的最佳水冷散熱模型。

F1小詞典 萬用豆知識4

為了解決散熱鰭片的問題,作者小倉茂德 這樣論述:

  ~一級方程式賽車最強後援部隊參上!~   讓F1迷大開香檳的讀物,用900多則詞條向賽車頂點致敬,   如果還不了解,那你就太慢了!   【萬用豆知識】為楓書坊以「手繪百科」為主題的全新系列作,   全系列以詞典的方式編排,一則詞條搭配一張討喜的插圖,   探討【咖哩】、【巧克力】、【啤酒】、【賽車】……多元主題,   輕快生動地講解與其相關的重要知識。   感到好奇時,可以透過本書窺探新世界的奧祕;   遇到疑惑時,可以翻開本書尋找正確可信的答案;   想要放鬆時,更可以讓本書發揮它的娛樂效果!     F1是Formula One(一級方程式)的簡稱,是單人座賽車的最高殿堂,  

 參與競賽的車隊必須自行研發、製造性能登峰造極的車輛,   再由集賽車技術、天賦及鬥志於一身的車手驅動,   在強敵環伺的激烈勝負之爭中,開創金字塔頂端的神話!   《F1小詞典》搜羅F1開創至今,900多則令人熱血沸騰的重要詞條,   包括寫下F1歷史的車手與著名車隊,以及「DRS」、「MGU-H」等道具或技術詞彙,      不管你是:   ✓為F1獻上心臟的忠實粉絲   ✓投身F1的世界的圈內人   ✓想輕鬆無負擔地認識F1賽車的人   都能在本書中拾獲瑰寶。   《F1小詞典》宗旨是讓大家能以輕鬆、愉快的方式進入F1世界,   即使覺得內容有點困難,詼諧有趣的插圖也能讓你會心一笑,

  穿插的多個「專欄」,更是專為鐵粉整理而出的行家級知識。   就讓小詞典加熱你的引擎,以超越極限之速,閃過終點線另一端,   現在,步上賽道吧! 本書特色   ◎幽默插圖+輕鬆文字,專業講解F1賽車界詞彙:   好玩又好笑的插圖配上淺顯易懂的解釋,就算是入門新手,也能毫不打滑地安穩上道!     ◎在看F1比賽之前必備的基本知識:   收錄F1賽車的構造、賽車的種類、F1的歷史、F1的計分方式等,在看F1比賽之前,眾多必須具備的基本常識,絕不在賽程間故障熄火!   ◎穿插其中的專欄,帶你深入認識F1賽車界:   F1車手間的競爭對手關係圖、賽車的動力單元介紹、輪胎的種類,甚至是世界各地

F1比賽場地的著名美食等專欄,拉近你與車手的距離!

通訊設備之熱傳分析與改良研究

為了解決散熱鰭片的問題,作者林鴻吉 這樣論述:

近年來,電子通訊設備處理速度與傳輸速度大幅提升,隨之而來的高溫已經成為設計人員必須面對的課題。本文研究之通訊設備是在自然對流情況下,僅靠流體本身之溫度差進行熱傳遞,過去憑著經驗與試誤方式進行設計,往往浪費大量時間與成本,因此需要有系統性的理論與實驗進行比對,並在有限時間內找出散熱模組之效能最佳化策略。 本文研究通訊設備系統內之有限空間散熱效能,利用熱流分析軟體FloTHERM 12並配合田口方法進行模擬規劃,品質特性為溫度低(望小)並選用直交表L9(34) 四因子三水準準位進行模擬,依照過往產品經驗選定以下四因子:散熱器表面塗層之熱輻射率(A)、導熱矽膠片之導熱係數(B)、散熱鰭片數量

(C)、散熱鰭片高度(D)。依照田口法實驗設計進行模擬並得出9組數據,透過Minitab 20統計軟體以品質特性望小為目標進行統計,得出本實驗散熱最佳因子水準組合為:A3B3C2D3,也就是散熱器表面塗層為石墨稀奈米碳、導熱矽膠片之導熱係數為5 W/(m·K)、鰭片數量為10 pcs、鰭片高度為45 mm。研究結果發現關鍵因子為導熱矽膠片,其S/N比為0.34,各水準溫度差異達到3.63°C,然而在主要電子零件其S/N比提升至0.56,各水準溫度差異達到5.85°C;在進行熱模擬分析與實驗量測數據比較,結果誤差為3.01%,因此熱模擬分析有相當程度的可信度,在產品研究與開發過程中若搭配田口方法

與Minitab統計分析,將可快速且有效的取得最佳設計方案。