散熱膏作用的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

散熱膏作用的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦褚柏菁,梅原亜也子寫的 芳療權威,日美台名師精選套組(共三冊):《十二經絡精油辨證療癒》+《芳香療法,對症輕療癒全書》+《170種病痛速查,對症芳療全醫典》 和賈忠中的 SMT工藝不良與組裝可靠性都 可以從中找到所需的評價。

另外網站低溫錫膏昇貿科技股份有限公司- 散熱膏成分也說明:散熱膏 成分- 散热器专用焊锡膏厂家散热器专用焊锡膏厂家、公司、企业阿里巴巴公司黄页 · 天气回暖,蚊子就多,幸好有了这个#紫草膏#植物妈妈,植物成分,温和清抖音 · 使用y ...

這兩本書分別來自方言文化 和電子工業所出版 。

國立勤益科技大學 化工與材料工程系 蔡明瞭所指導 吳柔萱的 聚氨酯導熱薄膜製備之研究 (2021),提出散熱膏作用關鍵因素是什麼,來自於聚氨酯、氧化鋁、導熱係數、填料、紫外線固化。

而第二篇論文國立中山大學 化學系研究所 陳軍互所指導 劉昀佩的 低溫法合成三維皺褶石墨烯 (2021),提出因為有 石墨烯、冷凍乾燥、皺褶球狀結構、抗聚集性、熱傳導的重點而找出了 散熱膏作用的解答。

最後網站11款散熱膏終極測試:塗抹6大技巧知多少,牙膏、醬油惡搞大全則補充:散熱膏 在電腦裡的工作以及重要性不難理解,散熱膏位於2個異質物體之間,主要負責傳導熱量的工作。由於發熱體(如CPU或晶片組)和散熱元件之間的表面不夠 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了散熱膏作用,大家也想知道這些:

芳療權威,日美台名師精選套組(共三冊):《十二經絡精油辨證療癒》+《芳香療法,對症輕療癒全書》+《170種病痛速查,對症芳療全醫典》

為了解決散熱膏作用的問題,作者褚柏菁,梅原亜也子 這樣論述:

結合台灣、日本、美國芳療名師,最完整、最實用「植物精油療法」套書!   ▍《十二經絡精油辨證療癒》──   權威中醫師獨家親授,循著「十二經絡」使用「精油」,   48種常見病症X 9大體質,有效對症療癒,根除多年問題!      褚氏太極X十二經絡,讓精油發揮最佳療效   褚柏菁醫師耗費多年,以中醫學的陰陽五行、十二經絡理論為基礎,   配置植物精油成分的分析,加上多年臨床實證經驗,建構出「褚氏太極」。   依據褚氏太極,各單方精油可顯示其藥性,   意即藉由對表裡經絡及臟腑產生特定影響,達到調節生理功能的效果;   同時能透過對大腦造成的影響,達到調節心靈功能的功效。   48種

疑難雜症,皆可用精油辨證療癒   精油除了能鎮靜心神、使人放鬆外,還可以發揮其他作用,   例如:健胃整腸、滋潤肌膚、美容保養、預防感染、淡化疤痕等等。   因此,褚柏菁醫師特別從人體六大系統中,歸納出常見的「48種疑難雜症」,   教大家從症狀中區辨出自身屬於9大體質的哪一種,   進而學會選用合適的精油、正確使用方式。   只要長期透過精油保健,將有助於消除壓力、促進全身循環,   恢復至身心健康、平衡的狀態,甚至還能達到預防疾病的效果。   舉例如下──   ►失眠:若淺眠多夢,適用「薰衣草」精油。   ►痛經:若經期易手足冰冷,可採用「肉桂」精油。   ►濕疹:適用可散熱止癢的精油,

如「尤加利」。   ►高膽固醇:適用可循環行氣的精油,如「生薑」。   ►網球肘:適用可消炎止痛的精油,如「茶樹」。   ▍《芳香療法,對症輕療癒全書》──   日本芳療認證檢定6大題綱 + 29款精油,全部收錄,考照輕鬆過關!   最新、最完整履歷!66種精油、22類基底油、22項飲療香草   一本通!擁有專業級芳療技術,考證照輕鬆過關   居家生活常有「雖還不至於就醫,但身體感覺真的不太舒服」,   此時運用精油的芳香療法便能緩解症狀、放鬆紓壓,對身心肌調理都能發揮大效用。   本書由日本最頂尖芳療大師梅原亞也子執筆,   是熱愛生活美好的你,絕不可錯過的芳療寶典。   真人示範!

精油按摩完全圖解指導,第一次就上手   純天然精油有著數十、甚至上百不同藥理作用自然物質,   能透過肌膚或呼吸來吸收發揮功效,且和一般化學藥品不同,   精油不會沉積人體造成內臟負擔,在短短一兩個小時內便能排出。   本書附「精油按摩完全圖解指導」,可幫你輕鬆藉由肌膚滲透得到功效,   內容完整、好用、好上手,包括──   ►真人示範,全彩圖解,一看就懂,絕不會產生做到一半卡住的窘境   ►護理油調製與使用方法,步驟清楚不繁雜   ►手掌、指腹、指掌運用,以及全面五大技法要點,權威芳療師不藏私指導   ►從頭臉部、肩頸手指、腹腰臀腿,一直到腳底,全身13個部位都完全步驟圖解   ►包含「自

我調理」和「伴侶調理」,都有個別詳盡解說   ▍《170種病痛速查,對症芳療全醫典》──   5秒速查表!對症自療170種病痛   最完整!芳療12種技法步驟,立即舒緩   5秒速查!170種病症 × 芳療12種技法 × 300種精油配方,快速因應,完全紓解   本書不僅完整囊括與詳細說明超過170種大小病痛照護知識,   更提供讀者5秒速查的「170種病痛速查表」,   當一有身體不適時,你便可利用這個以人體系統為主軸,   表格索引對照、圖像視覺提示的速查表,極快找到最適芳療技法與精油照護配方。   內附「芳療12種技法」,包括按摩、指壓、冷熱敷、揉香、擴香等等,   書中步驟與圖

示摘錄重點,簡單明瞭,即使是初次學習的人也能輕鬆到位。   此外,書中彙集了法、英、美、日、韓等頂尖醫學中心的研究,   統整出多達300則「醫療級精油配方」,同時附上「15項安心使用提示」。   無論你面臨身、心、靈的任何狀況,都能從中找到最具療效且安全的對症療方。   75款精油 × 6選購重點 × 8保存祕訣,聰明辨別品質好壞,使用更上手   本書特別分析、解密坊間常見的「精油等級」,教你如何透過「選購6要點」,   評估琳瑯滿目的精油品牌,學會閱讀、分辨產品標籤,   避開「假精油地雷」,直接就能採買到價格實惠與高品質兼具的「真精油」。   為了讓精油維持高品質狀態,書中詳細提供了「

保存8祕訣」,   只要按部就班、正確保存,就能減少精油被污染、變質、氧化等機率,   如此就能常保新鮮,進而發揮最佳療效!   【本套書包含三冊】   ■《十二經絡精油辨證療癒》   ■《芳香療法,對症輕療癒全書》   ■《170種病痛速查,對症芳療全醫典》  

聚氨酯導熱薄膜製備之研究

為了解決散熱膏作用的問題,作者吳柔萱 這樣論述:

本研究為探討聚氨酯導熱薄膜的製備,因此可被應用在電子元件、EMC封裝材料、散熱膏等,需要有散熱導熱的地方。 本研究利用表面改性的方法,採用環境友善、低成本、操作方便等,並嘗試藉由改性氧化鋁、雜化導熱填料、填料含量變化以及攪拌時間等變數,來探討對聚氨酯複合材料導熱性的影響。實驗結果證實後續以光學顯微鏡、SEM、導熱儀、TGA、拉伸等試驗儀作材料性能測試。 實驗結果證實使用表面改性與雜化填料對導熱性是有效的。本研究製備之聚氨酯導熱薄膜EBEC-2022 ,其導熱性高於純PU 的76.40%,為0.4433 W/m.K。另外在機械性質與熱穩定性上,實驗證實添加雜化填料是優於純PU與僅添

加單一填料的效果,如拉伸率、抗拉強度、熱膨脹係數、耐溫性等。 在選用基體上,我使用光固化型的聚氨酯,其好處是固化時間很快速,只要幾分鐘即可固化,且對環境友善,不需要高溫加熱固化。

SMT工藝不良與組裝可靠性

為了解決散熱膏作用的問題,作者賈忠中 這樣論述:

本書是寫給那些在生產一線忙碌的工程師的。全書以工程應用為目標,聚焦基本概念與原理、表面組裝核心工藝、主要組裝工藝問題及應用問題,以圖文並茂的形式,介紹了焊接的基礎原理與概念、表面組裝的核心工藝與常見不良現象,以及組裝工藝帶來的可靠性問題。 本書適合於從事電子產品製造的工藝與品質工程師學習與參考。 賈忠中,高級工程師,先後供職於中國電子集團工藝研究所、中興通訊股份有限公司,從事電子製造工藝研究與管理工作近30年。在中興通訊股份有限公司工作也超過20年,見證並參與了中興工藝的發展歷程,歷任工藝研究部部長、副總工藝師、總工藝師、首席工藝專家。擔任廣東電子學會SMT專委會副主任委員

、中國電子學會委員。對SMT、可製造性設計、失效分析、焊接可靠性有深入、系統的研究,擅長組裝不良分析、焊點失效分析。出版了《SMT工藝品質控制》《SMT核心工藝解析與案例分析》《SMT可製造性設計》等專著。 第一部分  工藝基礎 1 第1章  概述 3 1.1  電子組裝技術的發展 3 1.2  表面組裝技術 4 1.2.1  元器件封裝形式的發展 4 1.2.2  印製電路板技術的發展 5 1.2.3  表面組裝技術的發展 6 1.3  表面組裝基本工藝流程 7 1.3.1  再流焊接工藝流程 7 1.3.2  波峰焊接工藝流程 7 1.4  表面組裝方式與工藝路徑 8

1.5  表面組裝技術的核心與關鍵點 9 1.6  表面組裝元器件的焊接 10 案例1 QFN的橋連 11 案例2 BGA的球窩與開焊 11 1.7  表面組裝技術知識體系 12 第2章  焊接基礎 14 2.1  軟釺焊工藝 14 2.2  焊點與焊錫材料 14 2.3  焊點形成過程及影響因素 15 2.4  潤濕 16 2.4.1  焊料的表面張力 17 2.4.2  焊接溫度 18 2.4.3  焊料合金元素與添加量 18 2.4.4  金屬在熔融Sn合金中的溶解率 19 2.4.5  金屬間化合物 20 2.5  相點陣圖和焊接 23 2.6  表面張力 24 2.6.1  表面張力

概述 24 2.6.2  表面張力起因 26 2.6.3  表面張力對液態焊料表面外形的影響 26 2.6.4  表面張力對焊點形成過程的影響 26 案例3  片式元件再流焊接時焊點的形成過程 26 案例4  BGA再流焊接時焊點的形成過程 27 2.7  助焊劑在焊接過程中的作用行為 28 2.7.1  再流焊接工藝中助焊劑的作用行為 28 2.7.2  波峰焊接工藝中助焊劑的作用行為 29 案例5  OSP板採用水基助焊劑波峰焊時漏焊 29 2.8  可焊性 30 2.8.1  可焊性概述 30 2.8.2  影響可焊性的因素 30 2.8.3  可焊性測試方法 32 2.8.4  潤濕稱

量法 33 2.8.5  浸漬法 35 2.8.6  鋪展法 35 2.8.7  老化 36 第3章  焊料合金、微觀組織與性能 37 3.1  常用焊料合金 37 3.1.1  Sn-Ag合金 37 3.1.2  Sn-Cu合金 38 3.1.3  Sn-Bi合金 39 3.1.4  Sn-Sb合金 39 3.1.5  提高焊點可靠性的途徑 40 3.1.6  無鉛合金中常用添加合金元素的作用 40 3.2  焊點的微觀結構與影響因素 42 3.2.1  組成元素 42 3.2.2  工藝條件 44 3.3  焊點的微觀結構與機械性能 44 3.3.1  焊點(焊料合金)的金相組織 45 3

.3.2  焊接介面金屬間化合物 46 3.3.3  不良的微觀組織 50 3.4  無鉛焊料合金的表面形貌 61 第二部分  工藝原理與不良 63 第4章  助焊劑 65 4.1  助焊劑的發展歷程 65 4.2  液態助焊劑的分類標準與代碼 66 4.3  液態助焊劑的組成、功能與常用類別 68 4.3.1  組成 68 4.3.2  功能 69 4.3.3  常用類別 70 4.4  液態助焊劑的技術指標與檢測 71 4.5  助焊劑的選型評估 75 4.5.1  橋連缺陷率 75 4.5.2  通孔透錫率 76 4.5.3  焊盤上錫飽滿度 76 4.5.4  焊後PCB表面潔淨度 

77 4.5.5  ICT測試直通率 78 4.5.6  助焊劑的多元化 78 4.6  白色殘留物 79 4.6.1  焊劑中的松香 80 4.6.2  松香變形物 81 4.6.3  有機金屬鹽 81 4.6.4  無機金屬鹽 81 第5章  焊膏 83 5.1  焊膏及組成 83 5.2  助焊劑的組成與功能 84 5.2.1  樹脂 84 5.2.2  活化劑 85 5.2.3  溶劑 87 5.2.4  流變添加劑 88 5.2.5  焊膏配方設計的工藝性考慮 89 5.3  焊粉 89 5.4  助焊反應 90 5.4.1  酸基反應 90 5.4.2  氧化-還原反應 91 5.

5  焊膏流變性要求 91 5.5.1  黏度及測量 91 5.5.2  流體的流變特性 92 5.5.3  影響焊膏流變性的因素 94 5.6  焊膏的性能評估與選型 96 5.7  焊膏的儲存與應用 100 5.7.1  儲存、解凍與攪拌 100 5.7.2  使用時間與再使用注意事項 101 5.7.3  常見不良 101 第6章 PCB表面鍍層及工藝特性 106 6.1  ENIG鍍層 106 6.1.1 工藝特性 106 6.1.2 應用問題 107 6.2  Im-Sn鍍層 108 6.2.1 工藝特性 109 6.2.2 應用問題 109 案例6 鍍Sn層薄導致虛焊 109 6.

3  Im-Ag鍍層 112 6.3.1 工藝特性 112 6.3.2  應用問題 113 6.4 OSP膜 114 6.4.1 OSP膜及其發展歷程 114 6.4.2 OSP工藝 115 6.4.3 銅面氧化來源與影響 115 6.4.4 氧化層的形成程度與通孔爬錫能力 117 6.4.5 OSP膜的優勢與劣勢 119 6.4.6 應用問題 119 6.5 無鉛噴錫 119 6.5.1 工藝特性 120 6.5.2 應用問題 122 6.6 無鉛表面耐焊接性對比 122 第7章 元器件引腳/焊端鍍層及工藝性 124 7.1 表面組裝元器件封裝類別 124 7.2 電極鍍層結構 125 7.

3 Chip類封裝 126 7.4 SOP/QFP類封裝 127 7.5 BGA類封裝 127 7.6 QFN類封裝 127 7.7 外掛程式類封裝 128 第8章  焊膏印刷與常見不良 129 8.1  焊膏印刷 129 8.2  印刷原理 129 8.3  影響焊膏印刷的因素 130 8.3.1  焊膏性能 130 8.3.2  範本因素 133 8.3.3  印刷參數 134 8.3.4  擦網/底部擦洗 137 8.3.5  PCB支撐 140 8.3.6  實際生產中影響焊膏填充與轉移的其他因素 141 8.4  常見印刷不良現象及原因 143 8.4.1  印刷不良現象 143 8

.4.2  印刷厚度不良 143 8.4.3  汙斑/邊緣擠出 145 8.4.4  少錫與漏印 146 8.4.5  拉尖/狗耳朵 148 8.4.6  塌陷 148 8.5  SPI應用探討 151 8.5.1  焊膏印刷不良對焊接品質的影響 151 8.5.2  焊膏印刷圖形可接受條件 152 8.5.3  0.4mm間距CSP 153 8.5.4  0.4mm間距QFP 154 8.5.5  0.4~0.5mm間距QFN 155 8.5.6  0201 155 第9章  鋼網設計與常見不良 157 9.1  鋼網 157 9.2  鋼網製造要求 160 9.3  範本開口設計基本要求 

161 9.3.1  面積比 161 9.3.2  階梯範本 162 9.4  範本開口設計 163 9.4.1  通用原則 163 9.4.2  片式元件 165 9.4.3  QFP 165 9.4.4  BGA 166 9.4.5  QFN 166 9.5  常見的不良開口設計 168 9.5.1  範本設計的主要問題 168 案例7  範本避孔距離不夠導致散熱焊盤少錫 169 案例8  焊盤寬、引腳窄導致SIM卡移位 170 案例9  熔融焊錫漂浮導致變壓器移位 170 案例10  防錫珠開孔導致圓柱形二極體爐後飛料問題 171 9.5.2  範本開窗在改善焊接良率方面的應用 171

案例11  兼顧開焊與橋連的葫蘆形開窗設計 171 案例12  電解電容底座鼓包導致移位 173 案例13  BGA變形導致橋連與球窩 174 第10章  再流焊接與常見不良 175 10.1  再流焊接 175 10.2  再流焊接工藝的發展歷程 175 10.3  熱風再流焊接技術 176 10.4  熱風再流焊接加熱特性 177 10.5  溫度曲線 178 10.5.1  溫度曲線的形狀 179 10.5.2  溫度曲線主要參數與設置要求 180 10.5.3  爐溫設置與溫度曲線測試 186 10.5.4  再流焊接曲線優化 189 10.6  低溫焊料焊接SAC錫球的BGA混裝再流

焊接工藝 191 10.6.1  有鉛焊料焊接無鉛BGA的混裝工藝 192 10.6.2  低溫焊料焊接SAC錫球的混裝再流焊接工藝 196 10.7  常見焊接不良 197 10.7.1  冷焊 197 10.7.2  不潤濕 199 案例14  連接器引腳潤濕不良現象 200 案例15  沉錫板焊盤不上錫現象 201 10.7.3  半潤濕 202 10.7.4  滲析 203 10.7.5  立碑 204 10.7.6  偏移 207 案例16  限位導致手機電池連接器偏移 207 案例17  元器件安裝底部噴出的熱氣流導致元器件偏移 208 案例18  元器件焊盤比引腳寬導致元器件偏移

 208 案例19  片式元件底部有半塞導通孔導致偏移 209 案例20  不對稱焊端容易導致偏移 209 10.7.7  芯吸 210 10.7.8  橋連 212 案例21  0.4mm QFP橋連 212 案例22  0.4mm間距CSP(也稱?BGA)橋連 213 案例23  鉚接錫塊表貼連接器橋連 214 10.7.9  空洞 216 案例24  BGA焊球表面氧化等導致空洞形成 218 案例25  焊盤上的樹脂填孔吸潮導致空洞形成 219 案例26  HDI微盲孔導致BGA焊點空洞形成 219 案例27  焊膏不足導致空洞產生 220 案例28  排氣通道不暢導致空洞產生 220

案例29  噴印焊膏導致空洞產生 221 案例30  QFP引腳表面污染導致空洞產生 221 10.7.10  開路 222 10.7.11  錫球 223 10.7.12  錫珠 226 10.7.13  飛濺物 229 10.8  不同工藝條件下用63Sn/37Pb焊接SAC305 BGA的切片圖 230 第11章  特定封裝的焊接與常見不良 232 11.1  封裝焊接 232 11.2  SOP/QFP 232 11.2.1  橋連 232 案例31  某板上一個0.4mm間距QFP橋連率達到75% 234 案例32  QFP焊盤加工尺寸偏窄導致橋連率增加 235 11.2.2  虛焊

 235 11.3  QFN 236 11.3.1  QFN封裝與工藝特點 236 11.3.2  虛焊 238 11.3.3  橋連 240 11.3.4  空洞 241 11.4  BGA 244 11.4.1  BGA封裝類別與工藝特點 244 11.4.2  無潤濕開焊 245 11.4.3  球窩焊點 246 11.4.4  縮錫斷裂 248 11.4.5  二次焊開裂 249 11.4.6  應力斷裂 250 11.4.7  坑裂 251 11.4.8  塊狀IMC斷裂 252 11.4.9  熱迴圈疲勞斷裂 253 第12章 波峰焊接與常見不良 256 12.1 波峰焊接 256

12.2 波峰焊接設備的組成及功能 256 12.3 波峰焊接設備的選擇 257 12.4 波峰焊接工藝參數設置與溫度曲線的測量 257 12.4.1 工藝參數 258 12.4.2 工藝參數設置要求 258 12.4.3 波峰焊接溫度曲線測量 258 12.5 助焊劑在波峰焊接工藝過程中的行為 259 12.6 波峰焊接焊點的要求 260 12.7 波峰焊接常見不良 262 12.7.1 橋連 262 12.7.2 透錫不足 265 12.7.3 錫珠 266 12.7.4 漏焊 268 12.7.5 尖狀物 269 12.7.6 氣孔—吹氣孔/ 269 12.7.7  孔填充不良 270

12.7.8 板面髒 271 12.7.9 元器件浮起 271 案例33 連接器浮起 272 12.7.10 焊點剝離 272 12.7.11 焊盤剝離 273 12.7.12 凝固開裂 274 12.7.13 引線潤濕不良 275 12.7.14 焊盤潤濕不良 275 第13章 返工與手工焊接常見不良 276 13.1 返工工藝目標 276 13.2 返工程式 276 13.2.1  元器件拆除 276 13.2.2 焊盤整理 277 13.2.3 元器件安裝 277 13.2.4 工藝的選擇 277 13.3 常用返工設備/工具與工藝特點 278 13.3.1 烙鐵 278 13.3.2

 熱風返修工作站 279 13.3.3 吸錫器 281 13.4 常見返修失效案例 282 案例34 採用加焊劑方式對虛焊的QFN進行重焊導致返工失敗 282 案例35 採用加焊劑方式對虛焊的BGA進行重焊導致BGA中心焊點斷裂 282 案例36 風槍返修導致周邊鄰近帶散熱器的BGA焊點開裂 283 案例37 返修時加熱速率太大導致BGA角部焊點橋連 284 案例38 手工焊接大尺寸片式電容導致開裂 284 案例39 手工焊接外掛程式導致相連片式電容失效 285 案例40 手工焊接大熱容量外掛程式時長時間加熱導致PCB分層 285 案例41 採用銅辮子返修細間距元器件容易發生微橋連現象 286

第三部分 組裝可靠性 289 第14章 可靠性概念 291 14.1 可靠性定義 291 14.1.1 可靠度 291 14.1.2 MTBF與MTTF 291 14.1.3 故障率 292 14.2 影響電子產品可靠性的因素 293 14.2.1 常見設計不良 293 14.2.2 製造影響因素 294 14.2.3 使用時的劣化因素 295 14.3 常用的可靠性試驗評估方法—溫度迴圈試驗 296 第15章 完整焊點要求 298 15.1 組裝可靠性 298 15.2 完整焊點 298 15.3 常見不完整焊點 298 第16章 組裝應力失效 304 16.1 應力敏感封裝 304 1

6.2 片式電容 304 16.2.1 分板作業 304 16.2.2 烙鐵焊接 306 16.3 BGA 307 第17章 使用中溫度迴圈疲勞失效 308 17.1 高溫環境下的劣化 308 17.1.1 高溫下金屬的擴散 308 17.1.2 介面劣化 309 17.2 蠕變 309 17.3 機械疲勞與溫度迴圈 310 案例42 拉應力疊加時的熱疲勞斷裂 310 案例43 某模組灌封工藝失控導致焊點受到拉應力作用 310 案例44 灌封膠與PCB的CTE不匹配導致焊點早期疲勞失效(開裂) 312 第18章 環境因素引起的失效 313 18.1  環境引起的失效 313 18.1.1 電化

學腐蝕 313 18.1.2 化學腐蝕 315 18.2 CAF 316 18.3 銀遷移 317 18.4 硫化腐蝕 318 18.5 爬行腐蝕 318 第19章 錫須 321 19.1 錫須概述 321 19.2 錫須產生的原因 322 19.3 錫須產生的五種基本場景 323 19.4 室溫下錫須的生長 324 19.5 溫度迴圈(熱衝擊)作用下錫須的生長 325 19.6 氧化腐蝕引起的錫鬚生長 326 案例45 某產品單板上的輕觸開關因錫須短路 327 19.7 外界壓力作用下的錫鬚生長 327 19.8 控制錫鬚生長的建議 328 後記 330 參考文獻 331  

低溫法合成三維皺褶石墨烯

為了解決散熱膏作用的問題,作者劉昀佩 這樣論述:

石墨烯具有出色的傳導熱、電及機械性質並含有高表面積,常被用做電池、催化劑、複合材料等應用。但石墨烯在合成或加工處理時,因凡得瓦力的作用導致重新堆疊,此行為降低了石墨烯優異的性質,更嚴重的問題是無法均勻分佈在材料中。將二維石墨烯組裝成三維結構是最有效解決聚集的辦法,皺褶球狀的結構減少石墨烯片彼此間的接觸面積,藉此削弱凡得瓦力的作用,因而具有抗聚集的性質。因此我們的研究提供了一種低溫合成三維皺褶球狀氧化石墨烯的方法。本研究設備簡單且容易操作,成功合成的皺褶球狀石墨烯相較其他碳材料,可分散於各式溶劑中且能長時間穩定懸浮。另外經過 39 MPa 高壓的施力也不會破壞三維結構,仍可重新再分散於溶劑中,

顯示結構具有很高的抗壓強度。藉由調控氧化石墨烯濃度與冷凍速率,得知氧化石墨烯的濃度由低至高,產物結構為長條狀逐漸形成球狀。而冷凍速率越快,瞬間形成的冰核產生極大的壓力,導致氧化石墨烯片皺褶。因此探究出了先前文獻沒有報導的於低溫下石墨烯形成皺褶球狀結構的機制。最後將皺褶球狀石墨烯應用於熱界面材料中,透過導熱裝置量測,證實相比片狀的石墨烯,皺褶球狀石墨烯更有效增加整個膠體的傳熱性質。