手搖手電筒電路圖的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

另外網站手搖手電筒是很麼手搖手電筒的原理 - 趣讀也說明:手搖手電筒 是一種利用大功率的三相交流發電機進行手搖發電的裝置,利用此原理產生的電能可以通過開關電源來對手電筒的電路系統進行內建充電。

國立中興大學 電機工程學系所 張振豪所指導 蕭文敬的 具主動控制開關的高效能整流器設計 (2014),提出手搖手電筒電路圖關鍵因素是什麼,來自於整流器。

而第二篇論文長庚大學 醫療機電工程研究所 李明義所指導 賴郁辰的 肢體擺動發電儲能裝置及充放電迴路設計、開發及驗證 (2009),提出因為有 人動發電、肢體擺動、儲能電池的重點而找出了 手搖手電筒電路圖的解答。

最後網站動力燈- 维基百科,自由的百科全书則補充:動力燈(英語:Dyno torch),一種可以利用手動發電的手電筒,它本身並不需要電池。 ... [1] (页面存档备份,存于互联网档案馆) 手搖式動力燈。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了手搖手電筒電路圖,大家也想知道這些:

具主動控制開關的高效能整流器設計

為了解決手搖手電筒電路圖的問題,作者蕭文敬 這樣論述:

近年來能源擷取系統越來越受到重視。能源擷取系統被用來擷取環境能源,例如太陽能、熱能、振動能等,並將這些能源經過轉換器轉換為電能。獲得的電能可以儲存在電池中,供給負載電路使用。 本論文介紹一個具主動控制開關的高效能整流器設計。利用擁有偏移電壓的非平衡比較器,其較晚導通與提早關閉的特性,減少因為功率電晶體閘極電容充放電延遲,而導致電晶體無法瞬間關閉,造成逆向漏電流的情形。除此之外,比較器能主動偵測功率電晶體的源極與汲極,當輸入端電壓大於輸出端電壓,才會形成整流迴路,對輸出端電容充電。 本電路採用台積電TSMC 0.18μm 1P6M 1.8/3.3V CMOS製程實現電路。當

輸入交流電壓振幅為3V、輸入頻率200Hz、負載電容為10μF及負載電阻為35kΩ的狀況下,擁有最高的能源轉換效率93.39%、電壓轉換比例97.12%。而整流器在負載電阻為95kΩ時,能源轉換效率為90.11%、整流器的輸出端可以獲得2.95V的電壓,即電壓轉換比例可達98.47%。

肢體擺動發電儲能裝置及充放電迴路設計、開發及驗證

為了解決手搖手電筒電路圖的問題,作者賴郁辰 這樣論述:

開發無污染之新能源已成為世界各先進國家努力之目標,而人們在日常生活中肢體動作頻繁,其動能若能有效轉換與儲存成電能,即可開創一種新的環保能源。本研究之目的為開發一套具有發電、儲能與放電功能之「肢體擺動發電儲能裝置」,針對人體在日常生活中上肢與下肢等運動方式,分析其擺動模式進而設計發電機機構,再經由加工組裝實現機構雛形。本研究之工作內容包含三部分;第一部分進行肢體擺動電能轉換單元設計,工作內容包含三項,發電機構設計、機構動態模擬及發電電壓分析;發電機構設計理念係利用人體行走時上下肢擺動,將發電機構固定於小腿上,再利用小腿之簡諧運動使機構內擺錘擺動,其所產生之動能,經由擺臂帶動固設於發電機構上方旋

轉軸上之增速齒輪箱,進而透過樞接於增速齒輪箱輸出軸上之微型發電機使其轉動發電;發電機構包含一微型電機、增速齒輪箱、擺臂、擺錘及外框架等元件;所開發之發電機構擺臂長度為15公分,外框架成倒扇形,其下緣寬度為12公分,擺錘擺動幅度為45度,擺錘重量為200克;本研究係利用Solid Works工程設計軟體進行機構設計與分析;接著,利用動態模擬分析軟體COSMOS/Motion進行擺錘機械能轉換為動能之模擬分析。模擬時係設定小腿長度(膝關節至踝關節距離)為45公分,發電機構上緣之旋轉軸中心距離膝關節旋轉中心為22公分,小腿擺動幅度為50度,每秒行走1步(1Hz),模擬結果發現擺鎚可產生5760mWh

之動能。然後,本研究便進行實體加工並組裝完成發電機構雛型。接著,也進一步測試發電電壓,測試方式係以手部來回晃動外框架,每秒使動擺錘來回擺動一次的方式,再以TDS1012示波器記錄發電機輸出端之電壓波形,實驗結果得知發電機輸出電壓波形為正旋波,頻率約為300Hz,峰值電壓為2.1V。本研究第二部分係進行儲能及放電迴路設計;工作內容包含儲能電池選用評估與電路設計製作。首先在儲能電池選用評估方面,係將市售手持式電子產品所常用之各類二次電池進行能量密度比及安全性分析,最後選定鋰聚合物(Li-po)電池,其特性為能量密度高、操作電壓高、輸出功率大、放電平穩、工作溫度區間大、充放電循環可達 500 次以上

及自放電低與儲存壽命長等;接著,進行放電迴路設計製作,本研究為了達到最終產品符合可攜式與微小化之設計目標,因此選用無需外加工作電壓且為低電壓輸入之升壓轉換器(TI TPS61200DRC),僅需提供高於0.5V之輸入電壓,即可升壓並輸出5V之直流電,所以藉由此元件便可做為儲能升壓至4.2V供鋰聚合物電池充電使用;至於儲能及放電電路之設計係由發電機馬達為輸入端,經由三相全波橋式整流器進行直流轉換,再利用升壓轉換器升壓至4.2V,俾能將電能儲存至電池中。本研究係使用Altium Designer 6.8 電路設計工具軟體開發儲能及放電迴路,並已完成電路實體製作及電路盒。第三部分之主要工作係進行統整

合與應用實驗;工作項目包含系統元件整合、系統測試規劃與輸出功率分析。首先,系統元件整合是將第一部分完成之肢體擺動電能轉換單元與第二部分完成之儲能及放電迴路單元進行整合;在完成發電機與儲能及放電迴路連接後,系統測試方式係以手部晃動外框架,每秒使擺錘來回擺動一次的方式,再以TDS1012示波器記錄發電機輸出端之電壓波形,實驗結果得之發電峰值電壓為4.2V。接著,本研究為了驗證所開發之「肢體擺動發電儲能裝置」確實能符合原設計之目標,也進行了人體穿戴發電應用驗證;實驗係徵召一位身體健康年輕之受測者(年齡28歲,身高175cm),將發電機構固定於離膝關節20公分處,電路盒固定在大腿後,並連接發電機構與儲

能及放電迴路;本研究係利用NI USB-6009 訊號擷取器連接於儲能及放電迴路輸出端以擷取充電電壓;為了評估受測者在不同速度下之發電功率,本研究也分別設定了三種跑步機之履帶速度(3、4及5km/h)進行實驗。另外,儲能及放電迴路輸出端以500Ω電阻為模擬負載。實驗數據顯示發電功率與受測者行走速度成正相關;其中,受測者在設定為 5km/h之跑步機履帶速度時可產生856mWh電能。除此,為了評估人體小腿長度(膝關節至踝關節之距離)對發電功率影響,本研究也進一步徵召三位健康男性之受測者,其小腿長度分別為41、45與51公分,實驗時係設定跑步機之履帶速度為5km/h下進行,儲能及放電迴路輸出端以50

0Ω電阻為模擬負載,實驗數據顯示發電功率與受測者之小腿長度成正相關;在固定為5km/h之跑步機履帶速度下,小腿長度41、45與51公分時,分別可產生617、856及1119mWh電能。最後,為了評估不同速度下之儲能電池儲能效率,也徵召一位受測者,分別設定3、4及5km/h之三種跑步機履帶速度進行實驗,儲能及放電迴路輸出端以儲能電池為負載,實驗數據顯示受測者行走速度與充電效率成正比,在3、4及5km/h 之跑步機履帶速度測試條件下分別有40±3,52±5及77 ± 7%的充電效率。本研究所完成之「肢體擺動發電儲能裝置」,係由人體穿戴及行走時小腿之往復運動產生電能;經實驗顯示所能發電之功率,於行走

速度為5km/h時可產生1100mWh,此電量已足夠滿足一般可攜式電子產品所需電力;行走速度越快,此裝置發電量越大;另外,本研究也進行了應用驗證發現行走速度與小腿長度會影響發電功率。未來可進一步進行發電機構及儲能及放電迴路微小化設計,增加其實用價值。