主機板電池型號的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

主機板電池型號的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦胡斌寫的 電子工程師必備:元器件應用寶典(第3版) 和(美)庫克的 機器人制作晉級攻略都 可以從中找到所需的評價。

另外網站微星Z68A-G43(G3) (1155) 主機板主機板介紹主機板電池主機板 ...也說明:微星Z68A-G43(G3) (1155) 主機板、主機板主機板型號.主機板合板.主機板電池,痣位置心得購物中心周年慶特優惠特價商品、主機板型號、主機板電池、保濕 ...

這兩本書分別來自人民郵電 和人民郵電所出版 。

國立臺灣海洋大學 電機工程學系 鄭慕德所指導 陳宗漢的 利用PoE技術為筆記型電腦供電 (2013),提出主機板電池型號關鍵因素是什麼,來自於IEEE802.3AF/AT、四對線乙太網路供電、主動箝位順向式轉換器。

最後網站cmos 电池型号规格- 京东則補充:京东是国内专业的cmos 电池网上购物商城,本频道提供cmos 电池型号、cmos 电池规格信息, ... 戴尔笔记本电脑台式主机主板BIOS cmos电池Dell松下cr2032纽扣专用.

接下來讓我們看這些論文和書籍都說些什麼吧:

除了主機板電池型號,大家也想知道這些:

電子工程師必備:元器件應用寶典(第3版)

為了解決主機板電池型號的問題,作者胡斌 這樣論述:

從基礎知識起步,系統地介紹了數十大類元器件的知識和數百種元器件應用電路。書中每一種元器件的講解均包括:電路符號信息解說、外形識別方法、型號識別方法、引腳分佈規律及識別方法、引腳極性識別方法、主要特性講解及主要特性曲線、典型應用電路詳解、同功能不同形式電路的分析、質量檢測方法、更換和選配方法、調整和修配方法等。 胡斌,網路昵稱古木,江蘇大學副研究員,長期從事電子技術基礎教學、研究、寫作工作,出版了多種電子技術暢銷圖書,曾經兩次榮獲全國三等獎,一次獲北方十省市一等獎。至今,著作150余本,累計銷售接近200萬冊,擁有數百萬固定讀者群。胡斌老師崇尚人性化寫作——以讀者為本,

減輕讀者閱讀負擔,提高閱讀效率的嶄新寫作方式。通過圖文同頁、圖會說話、表格歸納方式,方便閱讀,消除視覺疲勞,使讀者以*高的效率獲得*大的信息量。寫作的**本書《電子工程師必備——元器件應用寶典》出版以來,連續榮登全國電子電工類暢銷書排行榜前3名,創立了一流的精品圖書品牌形象。 第 1章 元器件學習內容和學習方法 1.1 元器件知識學習內容 1.1.1 電子技術入門學習內容 1.1.2 電子元器件知識的學習內容 1.2 元器件知識學習方法和須知 1.2.1 識別電子元器件 1.2.2 掌握元器件主要特性 1.2.3 元器件是故障檢修關鍵要素 第 2章 電阻器基

礎知識及應用電路 2.1 普通電阻器基礎知識 2.1.1 電阻類元器件種類 2.1.2 部分普通電阻器特點綜述 2.1.3 貼片電阻器簡介 2.1.4 普通電阻器選用原則 2.2 電阻器電路圖形符號及型號命名方法 2.2.1 電阻器電路圖形符號 2.2.2 電阻器的型號命名方法 2.3 電阻器參數和識別方法 2.3.1 電阻器的主要參數 2.3.2 電阻器標稱值色環表示方法 2.3.3 電阻器參數其他表示方法 2.3.4 超低阻值電阻器和Ω電阻器 2.4 電阻器基本工作原理和主要特性 2.4.1 電阻器基本工作原理 2.4.2 普通電阻器主要特性 2.5 電阻

串聯電路和並聯電路 2.5.1 電阻串聯電路 2.5.2 電阻串聯電路故障處理 2.5.3 電阻並聯電路 2.5.4 電阻並聯電路故障處理 2.5.5 電阻串並聯電路 2.6 電阻分壓電路 2.6.1 電阻分壓電路工作原理 2.6.2 電阻分壓電路輸出電壓分析 2.6.3 帶負載電路的電阻分壓電路 2.7 電阻器典型應用電路 2.7.1 直流電壓供給電路 2.7.2 電阻交流信號電壓供給電路 2.7.3 電阻分流電路 2.7.4 電阻限流保護電路 2.7.5 直流電壓電阻降壓電路 2.7.6 電阻隔離電路 2.7.7 電流變化轉換成電壓變化的電阻電路 2.7

.8 交流信號電阻分壓衰減電路和基準電壓電阻分級電路 2.7.9 音量調節限制電阻電路 2.7.10 阻尼電阻電路 2.7.11 電阻消振電路 2.7.12 負反饋電阻電路 2.7.13 恒流錄音電阻電路 2.7.14 上拉電阻電路和下拉電阻電路 2.7.15 泄放電阻電路 2.7.16 啟動電阻電路 2.7.17 取樣電阻電路 2.8 熔斷電阻器基礎知識及應用電路 2.8.1 熔斷電阻器外形特徵和電路圖形符號 2.8.2 熔斷電阻器參數和重要特性 2.8.3 熔斷電阻器應用電路 2.9 網路電阻器基礎知識 2.9.1 網路電阻器外形特徵 2.9.2 網路電阻器

電路圖形符號及識別方法 第3章 敏感電阻器基礎知識及應用電路 3.1 熱敏電阻器基礎知識及應用電路 3.1.1 熱敏電阻器外形特徵和電路圖形符號 3.1.2 熱敏電阻器型號命名方法和主要參數 3.1.3 熱敏電阻器特性 3.1.4 PTC熱敏電阻器開水自動報警電路 3.1.5 PTC熱敏電阻消磁電路 3.1.6 DC/DC變換器中熱敏電阻器應用電路 3.1.7 NTC熱敏電阻器抑制浪湧電路 3.2 壓敏電阻器基礎知識及應用電路 3.2.1 壓敏電阻器外形特徵和電路圖形符號 3.2.2 壓敏電阻器特性 3.2.3 壓敏電阻器型號命名方法和主要參數 3.2.4 壓敏電阻

器浪湧和瞬變防護電路 3.2.5 壓敏電阻器其他應用電路 3.3 光敏電阻器基礎知識及應用電路 3.3.1 光敏電阻器外形特徵和電路圖形符號 3.3.2 光敏電阻器型號命名方法和主要參數 3.3.3 光敏電阻器控制電路 3.3.4 光敏電阻器其他應用電路 3.4 濕敏電阻器基礎知識及應用電路 3.4.1 濕敏電阻器外形特徵和電路圖形符號 3.4.2 濕敏電阻器結構和主要參數 3.4.3 濕敏電阻器應用電路 3.5 氣敏電阻器基礎知識及應用電路 3.5.1 氣敏電阻器外形特徵和電路圖形符號 3.5.2 氣敏電阻器結構和主要參數 3.5.3 氣敏電阻器應用電路 3.6

 磁敏電阻器基礎知識及應用電路 3.6.1 磁敏電阻器外形特徵和電路圖形符號 3.6.2 磁敏電阻器參數和特性 3.6.3 磁敏電阻器應用電路 第4章 可變電阻器和電位器基礎知識及應用電路 4.1 可變電阻器基礎知識 4.1.1 可變電阻器外形特徵和電路圖形符號 4.1.2 可變電阻器工作原理和引腳識別方法 4.2 可變電阻器應用電路 4.2.1 三極管偏置電路中的可變電阻電路 4.2.2 光頭自動功率控制(APC)電路靈敏度調整中的可變電阻電路 4.2.3 身歷聲平衡控制中的可變電阻電路 4.2.4 直流電動機轉速調整中的可變電阻電路 4.2.5 直流電壓微調可變電

阻器電路 4.3 電位器基礎知識 4.3.1 電位器外形特徵及部分電位器特性說明 4.3.2 電位器電路圖形符號、結構和工作原理 4.3.3 幾種常用電位器阻值特性 4.3.4 電位器型號命名方法和主要參數 4.3.5 光敏電位器和磁敏電位器 4.4 電位器構成的音量控制器 4.4.1 單聲道音量控制器 4.4.2 雙聲道音量控制器 4.4.3 電子音量控制器 4.4.4 場效應管音量控制器 4.4.5 級進式電位器構成的音量控制器 4.4.6 數位電位器構成的音量控制器 4.4.7 電腦耳機音量控制器 4.5 電位器構成的音調控制器 4.5.1 RC衰減式高、

低音控制器 4.5.2 RC負反饋式音調控制器 4.5.3 LC串聯諧振圖示音調控制器 4.5.4 積體電路圖示音調控制器 4.5.5 分立元器件圖示音調控制器 4.6 電位器構成的身歷聲平衡控制器 4.6.1 單聯電位器構成的身歷聲平衡控制器 4.6.2 帶抽頭電位器構成的身歷聲平衡控制器 4.6.3 雙聯同軸電位器構成的身歷聲平衡控制器 4.6.4 特殊雙聯同軸電位器構成的身歷聲平衡控制器 4.7 電位器構成的響度控制器 4.7.1 單抽頭式響度控制器 4.7.2 雙抽頭式響度控制器 4.7.3 無抽頭式響度控制器 4.7.4 專設電位器的響度控制器 4.7.

5 獨立的響度控制器 4.7.6 多功能控制器積體電路 4.8 電位器構成的其他電路 4.8.1 對比度控制器 4.8.2 亮度控制器 4.8.3 色飽和度控制器 第5章 電容器類元器件基礎知識 5.1 固定電容器基礎知識 5.1.1 固定電容器外形特徵和電路圖形符號 5.1.2 幾種電容器個性綜述 5.1.3 電容器結構和型號命名方法 5.1.4 電容器主要參數 5.1.5 電容器參數識別方法 5.2 電解電容器基礎知識 5.2.1 電解電容器外形特徵和電路圖形符號 5.2.2 幾種電解電容器個性綜述 5.2.3 電解電容器結構 5.2.4 有極性電解電容器

引腳極性識別 5.3 多層次多角度深度解說鋁電解電容器 5.3.1 工頻電源電路濾波電容器設計參考 5.3.2 開關電源電路濾波電容器 5.3.3 多引腳高頻鋁電解電容器 5.3.4 高分子聚合物固體鋁電解電容器 5.3.5 電容器損耗 5.3.6 電容器ESR 5.3.7 電容器ESL 5.3.8 電容器的漏電流 5.3.9 電容器的絕緣電阻和時間常數 5.3.10 電容器紋波電壓和紋波電流 5.3.11 電容器的Q值 5.3.12 電容器的溫度係數 5.4 微調電容器和可變電容器基礎知識 5.4.1 微調電容器和可變電容器外形特徵 5.4.2 微調電容器結構

和工作原理 5.4.3 可變電容器工作原理 5.4.4 可變電容器型號命名方法 第6章 電容器主要特性及應用電路 6.1 電容器重要特性 6.1.1 電容器直流電源充電和放電特性 6.1.2 電容器交流電源充電和放電特性 6.1.3 電容器儲能特性和容抗特性 6.1.4 電容器兩端電壓不能突變特性 6.1.5 電解電容器主要特性 6.2 電容串聯電路和並聯電路特性 6.2.1 電容串聯電路及主要特性 6.2.2 電容並聯電路及主要特性 6.2.3 電容串並聯電路及主要特性 6.3 電容器典型應用電路 6.3.1 電容降壓電路 6.3.2 電容分壓電路 6.3.

3 典型電容濾波電路 6.3.4 電源濾波電路中的高頻濾波電容電路 6.3.5 電源電路中的電容保護電路分析 6.3.6 安規電容抗高頻干擾電路 6.3.7 退耦電容電路 6.3.8 電容耦合電路 6.3.9 高頻消振電容電路 6.3.10 消除無線電波干擾的電容電路 6.3.11 中和電容電路 6.3.12 實用有極性電解電容並聯電路 6.3.13 有極性電解電容器串聯電路 6.3.14 揚聲器分頻電容電路 6.3.15 溫度補償型電容並聯電路 6.3.16 多隻小電容串並聯電路 6.3.17 發射極旁路電容電路 6.3.18 部分發射極電阻加旁路電容電路 6

.3.19 發射極具有高頻旁路電容電路 6.3.20 發射極接有不同容量旁路電容電路 6.3.21 微控制器積體電路中的電容重定電路分析 6.3.22 靜噪電容電路 6.3.23 加速電容電路 6.3.24 穿心電容電路 6.3.25 交流接地電容電路 6.4 可變電容器和微調電容器應用電路 6.4.1 輸入調諧電路 6.4.2 微調電容電路 6.4.3 可變電容器其他應用電路 6.5 RC電路 6.5.1 RC串聯電路 6.5.2 RC並聯電路 6.5.3 RC串並聯電路 6.5.4 RC消火花電路 6.5.5 話筒電路中的RC低頻雜訊切除電路 6.5.6 

RC錄音高頻補償電路 6.5.7 積分電路 6.5.8 RC去加重電路 6.5.9 微分電路 6.5.10 RC低頻衰減電路 6.5.11 RC低頻提升電路 6.5.12 RC移相電路 6.5.13 負載阻抗補償電路 第7章 電感類元器件基礎知識及應用電路 7.1 電感類元器件基礎知識 7.1.1 電感類元器件外形特徵 7.1.2 電感類元器件電路圖形符號 7.1.3 電感器結構及工作原理 7.1.4 電感器主要參數和識別方法 7.2 電感器主要特性 7.2.1 電感器感抗特性和直流電阻 7.2.2 線圈中的電流不能突變特性 7.3 電感器典型應用電路 7.

3.1 分頻電路中的分頻電感電路 7.3.2 電源電路中的電感濾波電路 7.3.3 共模和差模電感電路 7.3.4 儲能電感電路 7.4 多種專用線圈電路 7.4.1 行線性線圈電路 7.4.2 視頻檢波線圈電路 7.4.3 行振盪線圈電路 7.4.4 偏轉線圈電路 7.5 磁棒天線電路 7.5.1 磁棒天線外形特徵和電路圖形符號 7.5.2 磁棒天線結構和工作原理 7.5.3 磁棒基礎知識 第8章 變壓器基礎知識及應用電路 8.1 變壓器基礎知識 8.1.1 變壓器外形特徵 8.1.2 變壓器結構和工作原理 8.1.3 變壓器常用參數及參數識別方法 8.1

.4 變壓器遮罩 8.2 變壓器主要特性 8.2.1 變壓器主要應用電路綜述 8.2.2 隔離特性 8.2.3 隔直流通交流特性 8.2.4 一次、二次繞組電壓和電流之間的關係 8.2.5 一次和二次繞組之間的阻抗關係 8.2.6 變壓器同名端、松耦合和變壓器遮罩 8.2.7 變壓器緊耦合和松耦合 8.3 電源變壓器應用電路 8.3.1 典型電源變壓器電路 8.3.2 電源變壓器故障綜述 8.3.3 二次抽頭電源變壓器電路 8.3.4 兩組二次繞組電源變壓器電路 8.3.5 具有交流輸入電壓轉換裝置的電源變壓器電路 8.3.6 開關變壓器電路 8.4 其他變壓器

電路 8.4.1 枕形校正變壓器電路 8.4.2 行輸出變壓器電路 8.4.3 音訊輸入變壓器電路 8.4.4 音訊輸出耦合變壓器電路 8.4.5 中頻變壓器耦合電路 8.4.6 線間變壓器電路 8.4.7 變壓器耦合正弦波振盪器電路 8.4.8 實用變壓器耦合振盪器電路 8.4.9 電感三點式正弦波振盪器電路 8.4.10 雙管推挽式振盪器電路 第9章 LC電路和RL電路 9.1 LC諧振電路 9.1.1 LC自由諧振過程 9.1.2 LC並聯諧振電路主要特性 9.1.3 LC串聯諧振電路主要特性 9.2 LC並聯諧振電路和串聯諧振電路 9.2.1 LC並聯

諧振阻波電路 9.2.2 LC並聯諧振選頻電路 9.2.3 LC並聯諧振移相電路 9.2.4 LC串聯諧振吸收電路 9.2.5 串聯諧振高頻提升電路分析 9.2.6 放音磁頭高頻補償電路分析 9.2.7 輸入調諧電路 9.2.8 LC諧振電路小結 9.3 RL移相電路 9.3.1 準備知識 9.3.2 RL超前移相電路 9.3.3 RL滯後移相電路 9.3.4 LC、RL電路特性小結 第 10章 常用二極體基礎知識 10.1 二極體基礎知識 10.1.1 二極體外形特徵和電路圖形符號 10.1.2 二極體型號命名方法 10.1.3 二極體主要參數和引腳極性識別

方法 10.1.4 二極體工作狀態說明 10.2 二極體主要特性 10.2.1 正向特性和反向特性 10.2.2 正向壓降基本不變特性和溫度特性 10.2.3 正向電阻小、反向電阻大特性 10.3 橋堆和紅外發光二極體基礎知識 10.3.1 橋堆基礎知識 10.3.2 高壓矽堆和二極體排 10.3.3 紅外發光二極體基礎知識 10.4 穩壓二極體基礎知識 10.4.1 穩壓二極體種類和外形特徵 10.4.2 穩壓二極體結構和工作原理 10.4.3 穩壓二極體主要參數和主要特性 10.5 變容二極體基礎知識 10.5.1 變容二極體外形特徵和種類 10.5.2 變

容二極體工作原理和主要參數 第 11章 常用二極體應用電路 11.1 二極體整流電路 11.1.1 正極性半波整流電路 11.1.2 負極性半波整流電路 11.1.3 正、負極性半波整流電路 11.1.4 兩組二次繞組的正、負極性半波整流電路 11.1.5 正極性全波整流電路 11.1.6 負極性全波整流電路 11.1.7 正、負極性全波整流電路 11.1.8 正極性橋式整流電路 11.1.9 負極性橋式整流電路 11.1.10 2倍壓整流電路 11.1.11 4種整流電路小結 11.2 二極體其他應用電路 11.2.1 二極體簡易直流穩壓電路 11.2.2 二

極體限幅電路 11.2.3 二極體溫度補償電路 11.2.4 二極體控制電路 11.2.5 二極體開關電路 11.2.6 二極體檢波電路 11.2.7 繼電器驅動電路中的二極體保護電路 11.2.8 續流二極體電路 11.2.9 二極體或門電路 11.2.10 二極體與門電路 11.3 橋堆、穩壓二極體和變容二極體電路 11.3.1 橋堆構成的整流電路 11.3.2 穩壓二極體應用電路 11.3.3 變容二極體應用電路 第 12章 發光二極體基礎知識及應用電路 12.1 發光二極體基礎知識 12.1.1 發光二極體外形特徵和種類 12.1.2 發光二極體參數

12.1.3 發光二極體主要特性 12.1.4 發光二極體引腳極性識別方法 12.1.5 電壓控制型和閃爍型發光二極體 12.2 發光二極體指示燈電路 12.2.1 指示燈電路種類 12.2.2 發光二極體直流電源指示燈電路 12.2.3 發光二極體交流電源指示燈電路 12.2.4 發光二極體按鍵指示燈電路 12.3 LED電平指示器 12.3.1 LED電平指示器種類 12.3.2 多級LED光柱式電平指示器 12.3.3 5級單聲道積體電路LB1403 12.3.4 9級單聲道積體電路LB1409 12.3.5 5級雙聲道積體電路D7666P 12.3.6 功率

電平指示器 12.3.7 調諧電平指示器 12.4 其他形式LED電平指示器 12.4.1 LED光點式電平指示器 12.4.2 動態掃描式LED頻譜式電平指示器 12.4.3 頻壓法LED頻譜式電平指示器 12.4.4 全發光LED頻譜式電平指示器 12.4.5 實用頻譜式電平指示器 12.5 白色發光二極體基礎知識及應用電路 12.5.1 白色LED基礎知識 12.5.2 超高亮LED驅動電路 12.5.3 線性恒流LED驅動積體電路典型應用電路 第 13章 其他13種二極體實用知識及應用電路 13.1 肖特基二極體基礎知識及應用電路 13.1.1 肖特基二極體

外形特徵和應用說明 13.1.2 肖特基二極體結構和內電路 13.1.3 肖特基二極體特性曲線和應用電路 13.2 快恢復二極體和超快恢復二極體基礎知識及應用電路 13.2.1 快恢復二極體和超快恢復二極體外形特徵及特點 13.2.2 快恢復二極體和超快恢復二極體應用電路 13.3 恒流二極體基礎知識及應用電路 13.3.1 恒流二極體外形特徵和主要特性 13.3.2 恒流二極體應用電路 13.4 瞬態電壓抑制二極體基礎知識及應用電路 13.4.1 瞬態電壓抑制二極體外形特徵和與穩壓二極體的特性比較 13.4.2 瞬態電壓抑制二極體主要特性和應用電路 13.5 雙向觸發

二極體基礎知識及應用電路 13.5.1 雙向觸發二極體外形特徵和主要特性 13.5.2 雙向觸發二極體應用電路 13.6 變阻二極體基礎知識及應用電路 13.6.1 變阻二極體基礎知識 13.6.2 變阻二極體應用電路 13.7 其他7種二極體基礎知識綜述 第 14章 三極管基礎知識和直流電路 14.1 三極管基礎知識 14.1.1 三極管種類和外形特徵 14.1.2 三極管電路圖形符號 14.1.3 三極管型號命名方法 14.1.4 三極管結構和基本工作原理 14.1.5 三極管3種工作狀態說明 14.1.6 三極管各電極電壓與電流之間的關係 14.1.7 三極

管主要參數 14.1.8 三極管封裝形式 14.1.9 用萬用表分辨三極管的方法 14.2 三極管主要特性 14.2.1 三極管電流放大和控制特性 14.2.2 三極管集電極與發射極之間內阻可控和開關特性 14.2.3 發射極電壓跟隨基極電壓特性和輸入、輸出特性 14.3 三極管直流電路 14.3.1 三極管電路分析方法 14.3.2 三極管靜態電流作用及其影響 14.4 三大類三極管偏置電路 14.4.1 三極管固定式偏置電路 14.4.2 三極管分壓式偏置電路 14.4.3 三極管集電極-基極負反饋式偏置電路 14.5 三極管集電極直流電路 14.5.1 三極

管集電極直流電路特點和分析方法 14.5.2 常見的集電極直流電路 14.5.3 變形的集電極直流電路 14.6 三極管發射極直流電路 14.6.1 常見的三極管發射極直流電路 14.6.2 其他3種發射極直流電路 第 15章 3種基本的單級放大器 15.1 共發射極放大器 15.1.1 直流和交流電路分析 15.1.2 共發射極放大器中元器件作用的分析 15.1.3 共發射極放大器主要特性 15.2 共集電極放大器 15.2.1 共集電極單級放大器電路特徵和直流電路分析 15.2.2 共集電極放大器交流電路和發射極電阻分析 15.2.3 共集電極放大器主要特性

15.3 共基極放大器 15.3.1 共基極放大器直流電路 15.3.2 共基極放大器交流電路及元器件作用分析 15.3.3 共基極放大器主要特性 15.4 3種類型的單級放大器小結 15.4.1 3種類型放大器綜述 15.4.2 3種類型放大器的判斷方法 第 16章 積體電路基礎知識 16.1 積體電路基礎知識ABC 16.1.1 積體電路應用電路的識圖方法 16.1.2 積體電路的外形特徵和圖形符號 16.1.3 積體電路的分類 16.1.4 積體電路的特點 16.2 積體電路的型號命名方法和各類實用資料的使用說明 16.2.1 國內外積體電路的型號命名方法

16.2.2 有關積體電路引腳作用的資料說明 16.2.3 有關積體電路內電路方框圖和內電路的資料說明 16.2.4 有關積體電路引腳直流工作電壓的資料說明 16.2.5 有關引腳對地電阻值的資料說明 16.2.6 有關引腳信號波形的資料說明 16.2.7 幾種常見的積體電路封裝形式說明 16.2.8 積體電路SC1308L資料完整解讀 第 17章 積體電路常用引腳外電路 17.1 積體電路引腳分佈規律及引腳識別方法 17.1.1 識別引腳號的意義 17.1.2 單列積體電路引腳分佈規律及識別秘訣 17.1.3 雙列積體電路引腳分佈規律及識別秘訣 17.1.4 四列積體

電路引腳分佈規律及識別秘訣 17.1.5 金屬封裝積體電路引腳分佈規律及識別秘訣 17.1.6 反向分佈積體電路引腳分佈規律及識別秘訣 17.2 積體電路電源引腳和接地引腳識別方法及外電路分析 17.2.1 分析電源引腳和接地引腳的意義 17.2.2 電源引腳和接地引腳的種類 17.2.3 電源引腳和接地引腳的4種電路組合形式及外電路分析 17.2.4 電源引腳和接地引腳外電路特徵及識圖方法 17.3 積體電路信號輸入引腳和信號輸出引腳識別方法及外電路分析 17.3.1 分析信號輸入引腳和信號輸出引腳的意義 17.3.2 信號輸入引腳和信號輸出引腳的種類 17.3.3 信

號輸入引腳外電路特徵及識圖方法 17.3.4 信號輸出引腳外電路特徵及識圖方法 17.3.5 積體電路輸入和輸出引腳外電路識圖小結和信號傳輸分析 17.4 多層次全方位講解低壓差線性穩壓器積體電路 17.4.1 低壓差線性穩壓器積體電路工作原理 17.4.2 固定型低壓差線性穩壓器積體電路典型應用電路 17.4.3 調節型低壓差線性穩壓器積體電路典型應用電路 17.4.4 5腳調節型低壓差線性穩壓器積體電路 17.4.5 低壓差線性穩壓器積體電路並聯運用電路 17.4.6 負電壓輸出低壓差線性穩壓器積體電路 17.4.7 帶電源顯示的低壓差線性穩壓器積體電路 17.4.8

 雙路輸出低壓差線性穩壓器積體電路 17.4.9 3路(1LDO 2DC/DC)輸出低壓差線性穩壓器積體電路 17.4.10 4路輸出(2LDO 2DC/DC)低壓差線性穩壓器積體電路 17.4.11 低壓差線性穩壓器積體電路主要參數 17.4.12 低壓差線性穩壓器與開關穩壓器比較 17.4.13 穩壓器分類 17.4.14 超低壓差線性穩壓器 17.4.15 穩壓器調整管類型和輸入、輸出電容 17.4.16 低壓差線性穩壓器4種應用類型 第 18章 開關件及接外掛程式電路 18.1 普通開關件 18.1.1 開關件外形特徵和圖形符號 18.1.2 開關件基本工作原理

和特性、參數 18.2 專用開關件 18.2.1 波段開關外形識別與圖形符號 18.2.2 波段開關結構和工作原理 18.2.3 錄放開關 18.2.4 機芯開關 18.3 開關電路 18.3.1 電源開關電路 18.3.2 機芯開關電路 18.4 通用接外掛程式知識 18.4.1 φ3.5插頭/插座 18.4.2 針型插頭/插座 18.4.3 其他插頭/插座 18.4.4 電路板常用接外掛程式 18.4.5 接外掛程式實用電路 18.5 電腦接外掛程式 18.5.1 電腦介面 18.5.2 電腦主機板CPU插槽和擴展插槽實用知識 第 19章 晶體閘流管、場

效應管和電子管 19.1 晶體閘流管基礎知識 19.1.1 晶閘管外形特徵和電路圖形符號 19.1.2 普通晶閘管 19.1.3 門極關斷晶閘管 19.1.4 逆導晶閘管 19.1.5 雙向晶閘管 19.1.6 溫控晶閘管 19.1.7 部分晶閘管引腳分佈規律 19.2 場效應管基礎知識 19.2.1 認識場效應管 19.2.2 場效應管電路圖形符號識圖資訊 19.2.3 場效應管結構和工作原理 19.2.4 場效應管主要特性和參數 19.2.5 場效應管實用偏置電路 19.3 電子管基礎知識 19.3.1 電子管外形特徵和電路圖形符號 19.3.2 電子管結

構和工作原理 19.3.3 電子管主要特性和參數 19.3.4 電子管放大器直流電路 19.4 放大器件的鼻祖和音色令人神往的膽機 19.4.1 記住真空二極體和三極管發明人 19.4.2 膽機 19.4.3 名牌電子管簡介 第 20章 其他元器件 20.1 繼電器基礎知識及應用電路 20.1.1 繼電器基礎知識 20.1.2 繼電器控制功能轉換開關電路 20.1.3 繼電器觸點常閉式揚聲器保護電路 20.1.4 另一種繼電器觸點常閉式揚聲器保護電路 20.1.5 繼電器觸點常開式揚聲器保護電路 20.1.6 採用開關積體電路和繼電器構成的揚聲器保護電路 20.2

 卡座磁頭基礎知識及應用電路 20.2.1 磁頭外形特徵和電路圖形符號 20.2.2 磁頭結構和主要參數 20.2.3 放音磁頭和錄放磁頭輸入電路 20.3 直流有刷電動機基礎知識及應用電路 20.3.1 直流有刷電動機外形特徵和電路圖形符號 20.3.2 直流有刷電動機結構和主要參數 20.3.3 直流電動機識別方法 20.3.4 電動機速度轉換電路 20.3.5 電動機連續放音控制電路 20.4 石英晶振基礎知識及應用電路 20.4.1 石英晶振外形特徵和電路圖形符號 20.4.2 石英晶振工作原理和命名方法 20.4.3 石英晶振構成的串聯型振盪器 20.4.

4 石英晶振構成的並聯型振盪器 20.4.5 石英晶體自激多諧振盪器 20.4.6 微控制器電路中的晶振電路 20.5 陶瓷濾波器基礎知識及應用電路 20.5.1 陶瓷濾波器外形特徵和電路圖形符號 20.5.2 陶瓷濾波器等效電路和主要參數 20.5.3 陶瓷濾波器應用電路 20.6 聲表面波濾波器基礎知識及應用電路 20.6.1 聲表面波濾波器基礎知識 20.6.2 典型應用電路 20.7 光敏二極體、光敏三極管和光電池 20.7.1 光敏二極體 20.7.2 光敏三極管 20.7.3 矽光電池 20.8 系統閱讀:光電耦合器 20.8.1 光電耦合器外形特徵、

電路圖形符號和主要應用 20.8.2 光電耦合器種類 20.8.3 光電耦合器工作原理和內電路 20.8.4 電路設計中應知的光電耦合器主要特性和參數 20.8.5 電路設計中應知的光電耦合器隔離優點和缺點 20.8.6 高速光電耦合器6N137參數解說 20.8.7 光電耦合器電路設計中幾個問題和計算公式 20.8.8 電路設計中光電耦合器選配原則 20.8.9 光電耦合器兩種輸出電路 20.8.10 光電耦合器構成的3種光電開關電路 20.8.11 光電耦合器構成的電平轉換電路 20.8.12 光電耦合器構成的隔離線性放大器 20.8.13 微機控制系統中光電耦合器

的2種隔離電路 20.8.14 發光二極體輸入三極管接收型光電耦合器的2種應用電路 20.8.15 光電耦合器控制的電機電路 20.8.16 採用光電耦合器的雙穩態輸出電路 20.8.17 採用光電耦合器開關的施密特電路 20.8.18 採用光電耦合器構成的3種交流固態繼電器 20.8.19 直流高壓穩壓電路中光電耦合器電路 20.8.20 開關型直流穩壓電源中光電耦合器及電路設計要點 20.8.21 光電耦合器構成的4種邏輯電路 20.8.22 萬用表檢測光電耦合器方法 20.9 數位式顯示器基礎知識及應用電路 20.9.1 數字式顯示器基礎知識 20.9.2 分段式

發光二極體數碼管顯示電路 20.9.3 螢光數碼管 20.9.4 八段式螢光數碼管解碼器 20.9.5 七段式數碼管顯示電路 20.9.6 螢光數碼管HTL直接驅動電路和螢光數碼管TTL加電平轉換驅動電路 20.9.7 重疊式輝光數碼管顯示電路 20.9.8 液晶顯示器 20.9.9 有機發光二極體 20.10 半導體記憶體 20.10.1 記憶體和半導體記憶體種類 20.10.2 隨機記憶體(RAM) 20.10.3 唯讀記憶體(ROM) 20.11 揚聲器基礎知識及應用電路 20.11.1 揚聲器外形特徵和電路圖形符號 20.11.2 電動式揚聲器工作原理和主要

特性 20.11.3 揚聲器引腳極性識別方法 20.11.4 揚聲器分頻電路 20.12 傳聲器 20.12.1 駐極體電容式傳聲器 20.12.2 動圈式傳聲器 20.13 陶瓷氣體放電管 20.13.1 陶瓷氣體放電管結構 20.13.2 陶瓷氣體放電管應用電路 20.14 電路板、麵包板和散熱片 20.14.1 電路板 20.14.2 麵包板和一次性萬用電路板 20.14.3 散熱片 20.15 音響線材 20.15.1 線材與靚聲 20.15.2 發燒線材 第 21章 常用元器件檢測方法 21.1 電阻器檢測方法 21.1.1 萬用表測量各種規格電阻

器 21.1.2 萬用表在路測量電阻器阻值 21.1.3 電阻器修復與選配 21.1.4 熔斷電阻器故障處理 21.2 可變電阻器和電位器檢測及故障處理 21.2.1 可變電阻器檢測及故障處理 21.2.2 電位器檢測及故障處理 21.3 敏感電阻器檢測方法 21.3.1 熱敏電阻器檢測方法 21.3.2 壓敏電阻器和光敏電阻器檢測方法 21.4 電容器故障檢測方法 21.4.1 電容常見故障現象 21.4.2 指針式萬用表檢測小電容器品質的方法 21.4.3 指針式萬用表檢測有極性電解電容器的方法 21.4.4 指針式萬用表歐姆擋檢測電容器原理 21.4.5 數

字式萬用表檢測電容器的方法 21.4.6 固定電容器的修理和選配方法 21.4.7 微調電容器和可變電容器故障特徵及故障處理方法 21.5 電感器和變壓器檢測方法 21.5.1 電感器故障處理方法 21.5.2 音訊輸入變壓器和輸出變壓器故障處理方法 21.6 普通二極體檢測、選配與更換方法 21.6.1 普通二極體故障特徵 21.6.2 普通二極體檢測方法 21.6.3 二極體選配方法和更換方法 21.7 其他常用二極體檢測方法 21.7.1 橋堆檢測方法 21.7.2 穩壓二極體檢測方法 21.7.3 發光二極體檢測方法 21.7.4 變容二極體檢測方法 21

.7.5 肖特基二極體檢測方法 21.7.6 雙基極二極體檢測方法 21.7.7 其他二極體檢測方法 21.8 三極管檢測方法 21.8.1 三極管故障現象 21.8.2 指針式萬用表檢測NPN和PNP型三極管方法 21.8.3 三極管選配和更換操作方法 21.9 其他三極管檢測方法 21.9.1 達林頓管檢測方法 21.9.2 帶阻尼行輸出三極管檢測方法 21.10 開關件和接外掛程式檢測方法 21.10.1 開關件故障特徵和檢測方法 21.10.2 開關件故障處理方法 21.10.3 波段開關檢測方法 21.10.4 錄放開關故障特徵和修配方法 21.10.5

 機芯開關檢測方法 21.10.6 接外掛程式檢測方法 第 22章 尋找電路板上元器件、畫圖方法和安裝拆卸技術 22.1 尋找電路板上關鍵測試點和元器件方法 22.1.1 尋找電路板上地線方法 22.1.2 尋找電路板上電源電壓測試點方法 22.1.3 尋找電路板中三極管方法 22.1.4 尋找電路中積體電路某引腳方法 22.1.5 尋找電路板上電阻器方法 22.1.6 尋找電路板上電容器方法 22.1.7 尋找電路板上其他元器件方法和不認識的元器件方法 22.1.8 尋找電路板上信號傳輸線路方法 22.2 根據電路板畫出電路原理圖方法 22.2.1 根據電路板畫電路

原理圖基本思路和方法 22.2.2 三極管電路的畫圖方法 22.2.3 積體電路畫圖方法 22.3 畫小型直流電源電路圖方法 22.3.1 解體小型直流電源方法 22.3.2 畫出小型直流電源電路圖 22.4 常用元器件拆卸和安裝方法 22.4.1 常用元器件安裝方法 22.4.2 元器件拆卸方法 22.5 多種積體電路拆卸和裝配方法 22.5.1 積體電路更換操作程式 22.5.2 多種積體電路拆卸方法

主機板電池型號進入發燒排行的影片

跪求有空的朋友
為影片加上字幕(中文即可)
萬分感謝
https://www.youtube.com/timedtext_cs_panel?tab=2&c=UC1FmA48qj1YOYQ5I6j4l6YA

如果覺得我介紹的不錯,歡迎贊助我的開箱影片(Please support my video Channel) PayPal : [email protected]


開箱介紹:Nintendo Switch 遊戲機 ニンテンドースイッチ~ by 大人的玩具
賣場
http://class.ruten.com.tw/user/index00.php?s=18xtoys
FB
https://www.facebook.com/18Xtoys

任天堂Switch(日語:ニンテンドースイッチ,英語:Nintendo Switch)是任天堂出品的電子遊戲機,於2017年3月3日在日本、北美、歐洲和香港發售,同年12月1日在韓國與台灣發售。擁有可拆卸控制器和可分離式主機,遊戲載體使用了專用卡匣。主機處理器使用了NVIDIA客制的Tegra X1系統晶片,這是任天堂首次採用NVIDIA的系統晶片。[2]開發期中的主機於2015年3月17日以「NX」代號首次公布,在2016年10月20日首次於網路影片上公開正式名稱任天堂Switch和其造型。[4]

目錄 [隱藏]
1 硬體
1.1 主機和底座
1.2 手柄
1.3 硬體規格
2 軟體
2.1 系統
2.1.1 任天堂Switch線上服務
2.1.2 任天堂eShop
2.2 遊戲
3 沿革
4 評價
4.1 發售前
4.2 發售後
4.3 商業評論
4.4 銷售成績
5 事件
5.1 正式發表會前
5.1.1 假任天堂Switch惡搞事件
5.2 正式發售前
5.2.1 「任哥吉拉」事件
5.2.2 主機提前洩漏事件
5.2.3 Joy-Con失去與主機本體連接
5.3 正式發售後
5.3.1 卡匣「口感」
5.3.2 左Joy-Con感應不良問題
5.3.3 任天堂對產能致歉
6 法律糾紛
7 參考資料
8 外部連結
硬體
主機和底座

任天堂Switch主機、底座和Joy-Con手柄控制器
任天堂Switch混合了家用主機和便攜式遊戲機的概念,主體為一個類似平板電腦的裝置,採用了JDI生產的6.2英吋的多觸點顯示屏,解析度為1280x720像素;像素密度為236.87ppi。[5][6]內置32GB儲存空間,並支援Micro SD(SDHC、SDXC)儲存卡作為擴充。採用了USB Type-C型介面作為充電介面,可直接插上充電器充電,也可以放入底座內充電;此外該介面也負責主機與底座之間的畫面、聲音的資料傳輸。主機內置了一個主動散熱風扇和導熱管,目的是使處理器不會因為過熱降低效能,其出風口在主機上方。[7]

任天堂Switch的底座(Switch Dock)可以透過HDMI輸出1920x1080像素的畫面;底座還可以為Switch主機充電;底座上還有3個USB介面(2個USB2.0、1個USB3.0),但目前官方沒有給出用途範例;根據一些媒體的測試,用戶可以透過底座的USB介面連線鍵盤等硬體外設。[8]

手柄

任天堂Switch主機(上)與左右分開的Joy-Con控制器(下)
任天堂Switch的遊戲手柄「Joy-Con」是兩個採用了可分離式設計的手柄,可插在主機主體兩側以類似Game Boy Advance的形態進行遊戲,也可從主體上拆下後獨立作為兩個控制器進行雙人遊戲,還可以裝到外設「Joy-Con Grip」上合成一個傳統樣式的手柄控制器。[9][10][11][12]隨主機附贈的「Joy-Con Grip」沒有為Joy-Con手柄充電的功能,而單獨銷售的「Joy-Con Grip」則包含有為手柄充電的功能。[13]左右兩個Joy-Con手柄都內建了體感控制功能,並且還配備了被稱為「HD振動」的振動反饋裝置,可以給予玩家更細膩的反饋。此外,左側的Joy-Con手柄上包括了一個螢幕擷取按鍵,在發售時只能用於螢幕截圖,更新系統4.0.0後新增視訊錄製功能;右側的Joy-Con手柄中內建了讀取amiibo玩偶的NFC晶片和被稱為「IR Camera」的紅外線傳感器。[14][15]值得一提的是Joy-Con手柄是任天堂自FC遊戲機以來首次取消傳統的十字鍵,改為任天堂Game & Watch最初的分離式方向鍵。[16]


任天堂Switch Pro Controller
除主機附帶的Joy-Con外,玩家還可另購任天堂Switch Pro手柄。Pro手柄還是繼續使用傳統的十字鍵,不過相較於Wii U的手柄,它在鍵位上也有一定變化,最明顯的是右搖杆和ABXY按鍵位置對調,向Xbox系列手柄的按鍵布局靠攏。[17][18]該手柄為任天堂Switch專用,無法在其他任天堂家用遊戲機上使用。此外,Pro手柄右搖杆的主機板處還刻有隱藏的文字以感謝玩家。[19]

硬體規格
任天堂Switch的處理器使用了NVIDIA客制的Tegra X1系統晶片及其內建的GeForce顯卡,這是任天堂首次採用NVIDIA的處理器和顯卡。此前任天堂的家用主機從任天堂GameCube到Wii U都採用了IBM的處理器以及ATI和AMD顯卡。[2]根據遊戲媒體的評測,任天堂Switch使用的Tegra X1處理器為20奈米製造工藝,有4核心ARM Cortex-A57架構中央處理器以及4顆ARM Cortex-A53架構處理核心;[20]圖形處理器採用了基於Maxwell微架構的256核心CUDA,圖形處理器會根據主機處於便攜狀態或插入底座的不同情況進行差異化運算,在便攜狀態下運算頻率為307.2MHz,而插入底座後會提升至768MHz到921MHz。[21][22]主機記憶體為4GB LPDDR4。[23]

任天堂Switch主機的內建儲存空間為32GB,可使用microSD進行擴充,最高支援microSDXC標準,最大支援2TB容量;[24]主機在初始系統1.0.0時只能支援到microSDHC標準,發售同日提供的系統2.0.0更新使其可支援microSDXC標準。[25]

任天堂Switch的遊戲載體採用了任天堂掌上遊戲機系列上一直使用的卡匣而非自任天堂GameCube以來家用主機一直使用的光碟;值得一提的是,為了防止嬰幼兒誤吞卡匣,任天堂在生產卡匣時加入了無毒的苦味劑苯甲地那銨。[26]任天堂Switch繼續支援自家的有近場通訊的玩偶Amiibo。[27]任天堂Switch主機本體內建了4310mAh的鋰電池,但電池不可更換;而根據遊戲的不同,主機續航時間從2.5小時至6小時不等,例如玩《薩爾達傳說 曠野之息》電量最多能持續3小時。[28]

軟體
系統
主條目:任天堂Switch系統軟體
作業系統基於FreeBSD。[29]在任天堂Switch的系統框架中,任天堂隱藏了一個紅白機遊戲《高爾夫》,遊戲可以透過Joy-con操控。根據媒體和玩家分析,該彩蛋是為了向已故的前任社長岩田聰致敬,他是《高爾夫》唯一一名程式設計師。[30]此外任天堂Switch不會再支援Wii U和任天堂3DS上的遊戲社群交流網路服務「Miiverse」;而任天堂3DS系列機型上獨特的「擦肩通訊」功能也不會出現在任天堂Switch上。[31][32]

任天堂Switch線上服務
主條目:任天堂Switch線上服務
任天堂Switch採用叫做「Nintendo Switch Online Services」的新網路服務。2017年3月3日發售時為免費服務,計劃於2018年開始進行收費。屆時只有付費用戶可以透過任天堂Switch線上服務進行網路連線遊戲和語音聊天,獲得每月免費Virtual Console遊戲和限定優惠折扣,此外亦有免費用戶也可使用的基礎功能。這種線上服務有點類似於微軟推出的Xbox Live。[33][34]

任天堂eShop
主條目:任天堂eShop
在任天堂eShop所下載的任天堂Switch遊戲將不會綁定主機,而是綁定帳號,放棄了長久以來任天堂將遊戲綁定主機的政策。[35]玩家可任意修改自己的任天堂帳號所在國家或於同一台主機上登陸多個不同國家的任天堂帳號,來方便地購入只在其他國家發行的遊戲,或是選擇在價格最低廉的國家購入遊戲。這一政策在方便玩家的同時,亦被認為會一定程度上影響當地發行商的利益。截至2017年10月,南非與墨西哥等國eShop因有多個遊戲價格較其他國家eShop低廉而受到玩家關注。

遊戲
主條目:任天堂Switch遊戲列表和暢銷任天堂Switch遊戲列表
任天堂Switch並不是Wii U和任天堂3DS的後續機種,所以不會相容任天堂之前推出的Wii U或任天堂3DS上的遊戲,這結束了任天堂自Wii以來的家用主機可以相容上世代主機遊戲的歷史,也是任天堂首次在可攜式遊戲機上停止相容上一世代型號的遊戲。[36]同時任天堂Switch也是任天堂自FC遊戲機以來首個取消遊戲軟體鎖區的家用主機,也是繼任天堂DS後任天堂再次在可攜式遊戲機上沒有鎖區。[37]

第一款確認在製作的任天堂Switch遊戲是史克威爾艾尼克斯的《勇者鬥惡龍XI 追尋逝去的時光》,遊戲在2015年7月28日正式公布,並稱將計劃登陸當時還被稱作NX的任天堂Switch。[38]而任天堂本社第一款確認登陸新主機的遊戲是《薩爾達傳說 曠野之息》,遊戲原先是Wii U平台獨占。[39]在任天堂Switch正式公布後,育碧宣布旗下的《舞力全開2017》將會登陸任天堂Switch。[40]任天堂Switch的首部宣傳片中出現了《上古卷軸V:無界天際》的畫面,貝塞斯達表示很樂於與任天堂展開合作,但當時公司還沒有確認哪款作品會登陸任天堂Switch,直到2017年1月13日的發表會才正式確認該遊戲會在2017年秋季發售,這也是貝塞斯達首次在任天堂硬體平台上製作遊戲。[41][42]而SEGA也確定將在2017年發售開發代號為「Project Sonic 2017」的《音速小子》系列新作也將會登陸任天堂Switch。[43]2017年5月,卡普空宣布《魔物獵人XX》正式登陸任天堂Switch平台。該作可幾乎完整繼承3DS版的存檔。除了任天堂Switch版玩家可面連/網連之外,不同平台玩家也可以透過網連一同合作狩獵。[44][45]

利用PoE技術為筆記型電腦供電

為了解決主機板電池型號的問題,作者陳宗漢 這樣論述:

筆記型電腦由於功能強、體積小以及可攜帶的優點在現今的社會已經大量的普及化,雖然越來越省電,續航力越來越久,但仍然還是需要不時的充電。目前筆記型電腦的充電方式皆使用一專用的電源變壓器,將交流市電轉換成所需的直流電壓,然而各廠牌筆記型電腦的充電接頭還是不相容的情況下,常常換了筆記型電腦,電源變壓器也要跟著換,筆記型電腦越來越輕薄,但還是要帶著笨重的電源變壓器,若忘記攜帶,或沒有插座可使用,筆記型電腦空有強大的功能也無法使用。本論文提出了一種利用四對線的乙太網路供電方法(Power over Ethernet,PoE),改善了現有IEEE802.3af/at規範的供電侷限,將供電功率從30W提升至

60W。透過將受電裝置之線路整合於乙太網路插槽接口,在取得PoE電源後,再利用主動箝位順向式轉換器,將電源降壓轉換成筆記型電腦所需之直流電源,然後與電源變壓器所提供的電源做切換選擇,成為筆記型電腦充電的另一種替代方式。在此架構下,電腦可以一邊使用網路做資料的傳送,一邊同時接收電源,由於網路接頭是標準的規格,因此各廠牌的筆記型電腦只要有乙太網路接頭皆可適用。本論文驗證於一臺36W的ASUS小筆電與一臺65W的HP筆記型電腦,取得與電源變壓器近乎相同的充電效能,成功的取代電源變壓器的使用。此架構優點在提供筆記記型電腦一種標準之充電規格,省去攜帶電源變壓器的麻煩,讓不同型號的筆記型電腦可以共用相同的

充電插頭,減少線材與筆記型電腦之間的連接,亦能減少更換電源變壓器所產生的電子廢棄物。

機器人制作晉級攻略

為了解決主機板電池型號的問題,作者(美)庫克 這樣論述:

進階手冊,主要面向對機器人製作專業知識有一定瞭解的讀者。書中主要介紹以模組的形式製作機器人的方法,在介紹各個製作環節的過程中,你還可以學到機械製造、電子、微型控制器等方面的知識。 《機器人製作晉級攻略》適合初高中生、機器人非專業愛好者和初學者閱讀。 Davld Cook開辦了一個人氣很高的網站WWW.RobotRoorn.com,他和各位讀者分享其製作機器人的經驗已有十餘年的時間。他的兩本書均由Aptess出版。和其他的狂熱愛好者—樣,DavidCook的靈感來源於美國宇航局登陸火星的旅行者計畫。在白天的時候,DavidCook的工作是軟體發展。他的職業生涯是從為早期蘋果

公司的麥金托什電腦編寫了一些獲得獎項的電腦遊戲開始的。接下來,他創建並且運營了摩托羅拉公司為警官、急救醫師和消防員研發的公共安全應用程式。 目前,DavidCook在SmartSignal公司做開發經理。SmartSignal公司生產的是預測分析軟體,這款軟體可以偵聽分佈於全球的很多發電廠中的感應器。這款應用程式能夠在問題發生之前預警發電廠的工作人員。通過這款軟體,DavidCook和整個SmartSignal的團隊防止了停電事故的發生,降低了發電廠的運營成本,同時提高了他們的工作效率(這對環境是很有好處的)。 第1章 組裝一個調製信號的機器人 1 1.1 製造模組 1

1.1.1 拼裝嘟嘟機器人,或者不拼裝 1 1.1.2 章節的排布 2 1.2 要適應機械學的內容 3 1.2.1 儲備你自己的機械車間 3 1.2.2 觀察一個小型的銑床 4 1.2.2.1 使用銑床 5 1.2.2.2 承認對銑床的偏愛 7 1.3 把所有部件組裝起來 7 1.3.1 把機械的部分進行分組 7 1.3.2 把獨立電子元件模組進行分組 8 1.3.3 拼裝機器人並且完成測試 8 1.4 把部件和技術應用于其他機器人 8 第2章 比較兩種類型的家用電動機連接器以及避免常見的錯誤 10 2.1 比較兩種家用連接器的技術 11 2.1.1 測試望遠鏡管子式連接器 11 2.1.2

與穩固圓棒式連接器相對比 12 2.2 識別在連接器的鑽孔中的期待結果,還有常見的錯誤及其後果 13 2.2.1 把固定螺絲的孔洞與電動機連接杆的孔洞連接起來 14 2.2.2 排列孔洞的角度和孔洞的中心 14 2.2.2.1 接受孔洞和連接器機身的平行偏移 14 2.2.2.2 避免出現孔洞自身之間的平行偏差 15 2.2.2.3 避免出現孔洞自身之間的角度偏差 16 2.2.2.4 重新回顧望遠鏡管子的優點 17 2.3 準備好製造一個穩固圓棒的連接器 17 第3章 為連接器製造配件以及在穩固圓棒上面鑽孔 18 3.0 為鑽出位於中心的孔洞提供機械方面的提示 18 3.1 收集工具和部

件 18 3.2 為連接器準備好不同長度的穩固圓棒 19 3.2.1 測量電動機和十字軸 19 3.2.2 為連接器的機身選擇一個穩固的圓棒 19 3.2.2.1 計算連接器的長度 20 3.2.2.2 計算連接器的直徑 20 3.2.2.3 選擇連接器的材料 20 3.2.3 把穩固圓棒切割成連接器尺寸大小的部件 21 3.2.4 打磨連接器機身部件的兩端 22 3.2.5 把這些圓棒放置在一邊 24 3.3 製造一個連接器配件 24 3.3.1 切割連接器配件塊 25 3.3.2 鑽出連接器配件固定螺絲孔 27 3.3.3 用螺絲攻加工連接器配件固定螺絲的孔洞 27 3.3.4 在連接器配

件中鑽出連接器圓棒的孔洞 28 3.3.4.1 選擇鑽頭 28 3.3.4.2 解決深度問題 30 3.3.4.3 鑽孔 31 3.4 把金錢準備好 33 3.4.1 把過緊的裝配變大 33 3.4.2 給連接器配件添加一個固定螺絲 34 3.4.3 重新定位連接器的配件 34 3.5 在電動機連接杆和LEGO公司生產的十字軸連接器中鑽孔 34 3.5.1 更換鑽頭,而不要更換連接器圓棒 37 3.5.2 進行最後的一步:打磨端面 37 3.6 到目前為止,檢查一下連接器 37 第4章 完成穩固圓棒電動機連接器的加工 39 4.0 包括用螺絲攻加工孔洞和選擇固定螺絲 39 4.1 安裝連接器

的固定螺絲 39 4.1.1 確定連接器固定螺絲的位置 39 4.1.2 鑽出連接器固定螺絲的孔洞 40 4.1.3 用螺絲攻對連接器固定螺絲孔洞進行加工 41 4.1.3.1 選擇一種底部樣式的螺絲攻 41 4.1.3.2 與一個錐形樣式的螺絲攻進行對比 42 4.1.3.3 使用螺絲攻的技巧 42 4.1.4 選擇固定螺絲 43 4.2 添加LEGO公司生產的十字軸 44 4.3 總結 46 第5章 在輪子內部製造一個電動機 47 5.0 包括製造壓縮式相撲機器人的完美技術,機械加工圓形的部件(包括製造家用的輪子),使用階梯形材料塊,與不帶螺紋的孔洞匹配,而且要使用直徑非常大的鑽頭 47

5.1 遇到危險:前面有彎曲的連接杆 48 5.1.1 用軸承進行合適的驅動 48 5.1.1.1 防止顛簸和跌落 48 5.1.1.2 更換側向的連接器 49 5.1.1.3 在沒有支承的情況下發生彎折 49 5.2 製造一個輪轂適配型的連接器 49 5.2.1 把電動機連接杆外部的直徑與LEGO公司生產的輪子內徑匹配起來 50 5.2.2 僅僅是從連接器的圓棒開始 51 5.2.3 製造內部和外部的輪轂匹配型圓盤 52 5.2.3.1 選擇一個形狀 52 5.2.3.2 確定尺寸 52 5.2.3.3 選擇原材料 53 5.2.3.4 把原材料薄片切割成合適的尺寸 54 5.2.3.5

在直徑中心的孔洞中鑽好1/4英寸的孔洞 54 5.2.3.6 再問一次,為什麼要測量出尺寸超過所需要的金屬薄片呢? 55 5.2.3.7 用旋轉平臺鑽出孔洞 56 5.2.3.8 在圓盤中鑽出螺絲孔 59 5.2.3.9 完成輪轂匹配型圓盤的內部和外部加工 61 5.2.4 去掉LEGO公司生產的輪轂中心 63 5.2.4.1 在加工的過程中緊固輪轂 64 5.2.4.2 選擇一個Silver&Deming型號的鑽頭 64 5.2.4.3 把輪轂中心的部分鑽掉 64 5.2.4.4 把輪轂中心的剩餘部分打磨掉 65 5.2.5 匹配部件,然後把它們黏接在一起 66 5.2.5.1 把外部的圓盤

與輪轂進行匹配,然後黏接 66 5.2.5.2 把內部的圓盤與圓棒進行匹配,然後黏接 66 5.2.5.3 等待膠水乾燥 67 5.3 總結 67 第6章 理解電子實驗過程中的標準和設置 69 6.0 包括閱讀電路圖,使用一個牆壁嵌入式電源,磨毛髮光二極體,理解硬體按鈕的反彈和理解表面貼裝技術 69 6.1 閱讀電路圖 69 6.1.1 連接導線 70 6.1.2 設計部件 70 6.1.2.1 標記字母的分配 70 6.1.2.2 標記數位的分配 71 6.1.3 標記部件 71 6.1.3.1 標記電阻 72 6.1.3.2 標記電容 73 6.1.3.3 標記發光二極體和紅外線發光二極

體 75 6.1.3.4 標記其他部件 76 6.1.4 標明電源 76 6.1.4.1 簡化正極電源電壓的標記 76 6.1.4.2 把接地點用符號表示從而簡化佈線 77 6.2 使用無焊接的麵包板 78 6.2.1 挑選一個無焊接的麵包板 78 6.2.2 搭建好一個無焊接的麵包板以與照片匹配 79 6.2.2.1 為無焊接的麵包板上電 80 6.2.2.2 選擇一個交流電源適配器 80 6.2.2.3 添加一些方便的設施 81 6.3 瞭解示波器上面的曲線 82 6.4 駕馭現代電子學的前沿時尚 83 6.4.1 越過學習曲線的障礙 83 6.4.2 不要使用過時的技術 83 6.4.3

使用表面貼裝的部件 84 6.4.3.1 壓縮表面貼裝部件的尺寸 84 6.4.3.2 告別穿透孔洞的部件 85 6.4.3.3 用表面貼裝部件進行工作 85 6.4.3.4 把表面貼裝部件轉換成穿透孔洞的部件 85 6.4.3.5 混合使用封裝技術,並且進行匹配 86 6.4.3.6 尺寸縮小到手工勞動級別以下 87 6.5 總結 87 第7章 製造一個線性電壓校正器電源 88 7.0 包括經典的5V7805,電池反接保護,低回動校正器,簡單但是改良過的電池反接保護,可變電源和頭對頭的匹配 88 7.1 瞭解電壓校正器 88 7.2 瞭解線性電壓校正器電源 89 7.2.1 7805型線

性電壓校正器 89 7.2.1.1 介紹一個基於7805型校正器的5V電源 90 7.2.1.2 搭建基於7805型校正器的電源 92 7.2.2 通過減小所需要的未校正的電壓,改進電源電路 94 7.2.2.1 用LM2940MCP1702或者LP2954替代7805型校正器 94 7.2.2.2 用一個功率場效應管替代1N5817型二極體 96 7.2.2.3 在較低的電壓下增加電阻 97 7.2.2.4 選擇一個電阻較低的p溝道功率場效應管 97 7.2.2.5 分析不同線性電壓校正器電路的最小輸入電壓 98 7.2.2.6 提供3個5V線性電壓校正器的輸入/輸出電壓結果 101 7.2

.3 在線性電壓校正器中考慮不同的因素 104 7.2.3.1 防止電池反接的保護 104 7.2.3.2 防止短路 104 7.2.3.3 防止熱超載 104 7.2.3.4 一個完整電路的簡化和低成本 105 7.2.3.5 消耗靜態電流 105 7.2.3.6 隔離功率和雜訊 105 7.2.3.7 為你的機器人選擇一款線性電壓校正器 107 7.2.4 改變市場環境就是限制5V線性校正器的選擇空間 108 7.3 繼續進行優化過程 109 第8章 進行機器人電源的改進 111 8.0 包括大容量電容器,快速關斷開關,爆炸性鉭電容,旁路/解耦合,過電流保護和過電壓保護 111 8.1

把輸入電容和輸出電容的數值提高 111 8.1.1 有了大容量電容之後,電池的壽命會增加 113 8.1.2 有了大容量電容之後,電源關閉會出現延遲 113 8.1.3 使用一個雙刀雙擲開關,以減小電源關閉的時間 114 8.1.4 選擇大容量電容 115 8.1.5 為鉭電容實現較高的安全富餘空間 116 8.2 添加神奇的電容 117 8.3 在電路板上面佈滿旁路/解耦合電容 117 8.3.1 旁路掉通住電源的較長通路 119 8.3.2 在每個源頭對雜訊進行解耦合 119 8.3.3 選擇旁路/解耦合電容 119 8.4 防止因為短路或者電流超載帶來的損害 120 8.4.1 判斷是否

必需電流超載保護 120 8.4.2 用保險絲進行保護 120 8.4.3 用一個手動重定電路斷路器進行保護 121 8.4.4 用一個固態自動重定的高分子聚合物正溫度係數電阻設備進行短路和電流超載的保護 121 8.4.4.1 大幅度增加電阻以大幅度減小電流 121 8.4.4.2 安裝高分子聚合物正溫度係數電阻電流超載保護設備 122 8.4.4.3 選擇高分子聚合物正溫度係數電阻電流超載保護 123 8.5 在校正後的電路中防止受到電壓超載的損害 125 8.5.1 介紹齊納二極體 125 8.5.2 利用齊納二極體在電壓超載的情況下短接電源 126 8.5.2.1 用電壓超載短路使電流

超載保護進入異常狀態 127 8.5.2.2 把這個組合中的一個成員去掉:齊納二極體會成為犧牲品而損壞 127 8.5.3 選擇一個合適的擊穿電壓 128 8.5.4 購買齊納二極體 128 8.6 把所有的部件組裝起來構成一個穩健的機器人電源 129 第9章 驅動電動機 130 9.0 包括所有的電動機模式,單晶體管電動機驅動器,二極體保護,雙極型H橋、邏輯晶片和微控制器 130 9.1 為什麼要使用電動機驅動器? 130 9.1.1 在高於邏輯晶片可以提供的高電壓下運行電動機 131 9.1.2 在高於邏輯晶片可以提供的高電流下運行電動機 131 9.1.3 電動機雜訊會造成邏輯的錯誤

131 9.1.4 使用未校正的電源和校正後的電源對電動機進行供電的對比 132 9.2 展示電動機的4種模式 132 9.2.1 順時針旋轉 133 9.2.2 逆時針旋轉 134 9.2.3 自由旋轉/滑行(緩慢衰減) 134 9.2.4 制動/停止(快速衰減) 134 9.2.4.1 耗費更多的能量 134 9.2.4.2 通過快速衰減完成制動 135 9.3 用簡單的一個單一電晶體進行驅動 135 9.3.1 介紹NPN雙極型單一電晶體電動機驅動器電路 136 9.3.1.1 用電晶體進行開關控制 137 9.3.1.2 在電動機驅動電路中使用電晶體作為關/開的開關,而不是放大器 13

8 9.3.1.3 用電阻來限制基極電流 138 9.3.1.4 用二極體保護電晶體 139 9.3.2 實現NPN型雙極型單一電晶體的電動機驅動電路 139 9.3.3 介紹PNP雙極型單一電晶體電動機驅動器電路 140 9.3.4 實現PNP型雙極單一電晶體電動機驅動器電路 140 9.4 把NPN型電動機驅動器和PNP型電動機驅動器放在一起 141 9.4.1 把NPN型電動機驅動器電路和PNP型電動機驅動器電路組合起來 142 9.4.2 避免短路 142 9.5 經典的雙極型H橋 143 9.5.1 在H橋中實現順時針旋轉 144 9.5.2 在H橋中實現逆時針旋轉 145 9.5.

3 用一個H橋電氣制動器使電動機減速 145 9.5.4 用圖中的上方的電晶體進行制動 145 9.5.5 用H橋進行自由旋轉 147 9.5.6 列舉其他的H橋組合方式 147 9.5.7 實現經典的雙極型H橋 148 9.6 與圖中的上方的電晶體打交道 148 9.6.1 通過不校正邏輯晶片的方法而避免使用接合區 149 9.6.2 通過對H橋進行校正而避免使用接合區 149 9.6.3 通過一個NPN型電晶體完成與PNP型電晶體的接合 149 9.6.3.1 撥動開關 150 9.6.3.2 為R5選擇一個電阻數值 150 9.6.3.3 為雙極型電動機驅動器電路確定電壓的範圍 151

9.6.3.4 實現帶有NPN型接合的PNP型單一電晶體雙極型電動機驅動器 151 9.6.3.5 完成雙極型H橋 152 9.6.4 使用一個接合晶片 153 9.6.4.1 選擇4427型晶片 153 9.6.4.2 把4427型驅動晶片接合到H橋 153 9.6.4.3 選擇4427型驅動晶片或者一個類似的系列驅動晶片 154 9.7 掌握電動機的控制技術 155 第10章 驅動電動機 157 10.0 本章內容包括功率金屬氧化物半導體場效應管(MetalOxideSemiconductorFieldEffectTube,MOSFET)(以下簡稱“場效應管”)電動機的驅動,上拉電阻和下

拉電阻,重要電動機的直通、並行場效應管以及電動機驅動晶片的匹配(包括4427系列晶片、SN754410系列晶片和多功能的MC33887晶片) 157 10.1 用場效應管驅動電動機 158 10.1.1 對n溝道功率場效應管單晶體管電動機驅動電路的介紹 158 10.1.1.1 用電壓而不是電流來控制電晶體開關 158 10.1.1.2 一定要與場效應管的柵極相連 159 10.1.1.3 實現n溝道功率場效應管單晶體管電動機驅動電路 160 10.1.2 用電阻提供一個默認的輸入數值 160 10.1.2.1 通過上拉電阻把輸入的預設值設置成高電平 161 10.1.2.2 通過下拉電阻把輸

入的預設值設置成低電平 162 10.1.2.3 為上拉電阻或者下拉電阻選擇一個數值 162 10.1.2.4 在無電阻、上拉電阻或者下拉電阻中做出選擇 163 10.1.3 重新修正n溝道功率場效應管單一電晶體電動機驅動器電路以加入一個下拉電阻 164 10.1.4 實現n溝道帶有下拉電阻的功率場效應管單一電晶體電動機驅動器電路 165 10.1.5 介紹p溝道功率場效應管單一電晶體電動機驅動器電路 166 10.1.6 實現p溝道功率場效應管單一電晶體電動機驅動器電路 166 10.1.7 介紹功率場效應管H橋 167 10.1.7.1 向電路中添加肖特基二極體是可選的,但是我們推薦這麼做

167 10.1.7.2 實現功率場效應管H橋 168 10.1.7.3 接合到功率場效應管H 橋上面 168 10.1.8 選擇功率場效應管 172 10.1.8.1 我們需要減小開關電阻 173 10.1.8.2 意識到場效應管是有電阻的 174 10.1.8.3 加熱會增加場效應管的電阻 174 10.1.8.4 並聯場效應管可以降低電阻 174 10.1.8.5 對比並聯場效應管電晶體和並聯雙極型電晶體 176 10.2 用晶片驅動電動機 177 10.2.1 設想一下理想的條件 177 10.2.2 使用4427系列,作為獨立的電動機驅動器 178 10.2.3 在晶片上面使用經典

的雙極型H橋 181 10.2.4 介紹MC3387型晶片:一款功能豐富的場效應管H橋電動機驅動器 182 10.2.4.1 瞭解管腳 184 10.2.4.2 實現MC33887型H橋電動機驅動器 185 10.2.4.3 感知電動機的電流 187 10.3 評估電動機驅動器 189 10.3.1 評估電動機驅動器電流傳送性能 190 10.3.1.1 評估在非常輕的負載的條件下電動機驅動器電壓輸出 190 10.3.1.2 評估在負載適中的條件下電動機驅動器電壓輸出 191 10.3.2 評估電動機驅動器的效率 192 10.3.2.1 評估在負載很大的條件下電動機驅動器電壓輸出 192

10.3.2.2 評估在負載適中的條件下電動機驅動器電壓輸出 193 10.4 總結 194 第11章 製造一個紅外線模組的障礙、對手和牆壁探測器 195 11.0 包括松下公司生產的PNA4602M型38kHz的紅外線探測器,包括74AC14型雙色發光二極體驅動器,給出如何選擇紅外線發射機、選擇微調電位器、減小串擾和選擇電容的方法 195 11.1 用一個流行的模組探測調製信號的紅外線,或者另外一個跳到遠端控制的原因 196 11.1.1 介紹松下公司生產的PNA4602M型光積體電路 196 11.1.2 連接好PNA4602M型光積體電路 197 11.1.3 測試PNA4602M型光

積體電路 197 11.1.3.1 仔細觀察調製後的信號 198 11.1.3.2 更進一步地仔細觀察探測延時 199 11.2 通過包括一個發光二極體指示燈對探測電路進行擴展 199 11.2.1 添加一個74AC14型反向器晶片用來驅動發光二極體 199 11.2.2 檢查指示燈電路 200 11.2.2.1 用本地的電容對電源進行去噪 200 11.2.2.2 用一個高級的互補型場效應管邏輯晶片為發光二極體供電 200 11.2.2.3 用一個雙色發光二極體表明探測狀態和未探測狀態 201 11.3 完成反射探測器電路 203 11.3.1 檢查完整的反射性探測器電路圖 203 11.3

.1.1 產生38kHz的光波 204 11.3.1.2 發射38kHz的光波 204 11.3.2 在一個無焊接的麵包板上面實現38kHz的反射性探測器 205 11.3.2.1 為PNA4602M型光積體電路選擇一個紅外線發光二極體 205 11.3.2.2 購買一個合適的紅外線發光二極體 207 11.3.2.3 為R7和R6選擇電位器 207 11.3.2.4 選擇電容 208 11.4 使其正常工作 211 第12章 對反射性探測器進行精確調整 213 12.0 包括手動調整,插入紅外線洩漏點,用一個處於頻率模式的數位萬用表進行調整,用示波器進行調整,紅外線極限以及比較不同材料的距

離探測 213 12.1 調整到38kHz的頻率上 213 12.1.1 在探測到信號和探測不到信號之間選擇一個中間階段 214 12.1.1.1 從未表明探測到物體就說明發射機存在某種問題 214 12.1.1.2 總是表明探測到物體就說明信號存在洩漏 214 12.1.2 在頻率探測中使用數位萬用表 216 12.1.3 使用示波器 217 12.1.4 揭示使用施密特觸發器反向器的目的 217 12.1.5 診斷在電路調整過程中出現的問題 218 12.1.5.1 定位合理的頻率精確度 219 12.1.5.2 追求過分的頻率精確度 219 12.1.5.3 接受振盪器電路有限的精確度和

穩定度 219 12.2 反射性探測器的局限性 220 12.2.1 無法在室外工作,也無法在過亮的光照條件下工作 220 12.2.2 無法探測某些種類的物體 221 12.2.3 無法探測到特別遠處的物體,也無法探測到特別近的物體 221 12.2.3.1 把你的距離和我的距離進行比較 222 12.2.3.2 分析距離的結果 222 12.2.4 無法提供距離範圍的數值 224 12.3 為一個實用性的機器人應用場景做好準備 224 第13章 嘟嘟機器人 225 13.0 製造無意識的房間探險者,把模組連接起來,用邏輯晶片進行控制,重新利用三明治機器人,製造機身部件的範本,使用節省空間

的並聯偏置電動機,交換齒輪,鑽一摞電動機安裝點,選擇滑行器 225 13.1 檢查嘟嘟機器人 226 13.2 從兩側觀察嘟嘟機器人 226 13.3 從頂部和下方觀察嘟嘟機器人 227 13.4 嘟嘟機器人的電路部分 227 13.4.1 供給電源 228 13.4.2 用簡單的邏輯控制方向 229 13.4.3 向左轉和向右轉 230 13.4.4 逐漸向左轉和逐漸向右轉 231 13.4.5 避免出現紅外線洩漏 231 13.5 製造嘟嘟機器人的機身 232 13.6 聲明警告因為齒輪電動機的可用性 232 13.6.0 在嘟嘟機器人中使用精確的脫身齒輪電動機 233 13.7 傾向於一

些特定的屬性 234 13.8 設計機器人的機身 235 13.8.1 製造範本 235 13.8.2 列印範本 236 13.8.3 連接範本 236 13.8.4 在工件中調整範本 237 13.8.5 購買孔洞,以提升中心定位的性能 237 13.8.6 在機械加工工件的直邊時,去除護帶 238 13.9 製造嘟嘟機器人的中心平臺 239 13.9.1 用銑床加工一個圓盤或者購買一個圓盤 239 13.9.2 在嘟嘟機器人的中心平臺安排好螺絲孔洞,再用螺絲攻進行加工 239 13.10 檢查嘟嘟機器人的電動機機械原理 240 13.10.1 使用匹配的矩形電動機安裝方案 240 13.1

0.2 選擇摩擦匹配的電動機或者使用固定螺絲 241 13.10.3 用螺絲固定電動機 241 13.10.4 連接到LEGO公司生產的齒輪和輪子上面 242 13.11 選擇LEGO公司生產的輪子 242 13.11.1 把無用齒輪放置在輪子的中心 243 13.11.2 減慢速度並且增加扭矩 243 13.11.3 增加速度並且減小扭矩 244 13.11.4 用滑輪而不是齒輪調整速度和扭矩 244 13.12 達到LEGO生產的移動部件的物理極限 245 13.13 製造嘟嘟機器人的電動機固定點 246 13.13.1 確定電動機固定點的尺寸 246 13.13.2 準備原材料 246

13.13.3 選擇現成的材料,而不是用銑床加工 247 13.13.4 同時鑽好所有的電動機固定點 247 13.13.4.1 把這一摞材料放置在老虎鉗上,要留有額外的餘地 248 13.13.4.2 放置鑽頭 248 13.13.4.3 鑽出3個孔洞 249 13.13.4.4 準備鑽出更大的電動機的孔洞 249 13.13.4.5 放置好直徑較寬的鑽頭 250 13.13.4.6 鑽出電動機的孔洞 250 13.13.5 鑽出孔洞用來把電動機的固定點固定在中心平臺上面 251 13.13.5.1 選擇部分鑽透的帶螺紋的電動機固定點螺絲孔洞 251 13.13.5.2 選擇完全鑽透的不帶螺

紋的電動機固定點螺絲孔洞 252 13.13.5.3 沿著螺絲頭滑動 252 13.13.5.4 鑽出電動機固定點的螺絲孔洞 253 13.13.5.5 鑽出部分穿透的電動機固定點孔洞 254 13.13.6 展現出最終完工的電動機固定點 254 13.14 總結嘟嘟機器人 255 第14章 測試嘟嘟機器人的行進性能 256 14.0 完成安全性檢查,耗盡電能,測量電路的電阻,監測電流和常見的問題以及解決方案,設計障礙物路線,避免致命的卡住狀態,理解高光束的滯回現象,以及使用短接跳線 256 14.1 為測試性行進做好準備 256 14.1.1 把所有的控制端都移動到安全或者適中的位置 25

6 14.1.2 每次測試一個模組 257 14.1.3 測量整個電路的電阻 257 14.1.3.1 耗盡電源 257 14.1.3.2 測量電阻 258 14.1.3.3 電阻的數值過低 259 14.1.3.4 電阻的數值過高 259 14.1.4 把機器人放置在LEGO公司生產的積木上面 259 14.1.5 檢查電池的電壓和極性 260 14.1.6 在開啟的時候觀察電流的消耗 260 14.2 準備好機器人,並且修正小的錯誤 261 14.2.1 精確調節紅外線反射性探測器 261 14.2.2 反轉紅色發光二極體 261 14.2.3 測試感測器 262 14.2.4 搞混電動機

的連接方式 262 14.3 評估嘟嘟機器人的性能 263 14.3.1 在測試行進的過程中遇到了問題 263 14.3.1.1 遇到機器人反轉的問題 263 14.3.1.2 遇到機器人卡住的問題 263 14.3.1.3 遇到機器人移動緩慢的問題 264 14.3.1.4 遇到機器人移動過快的問題 264 14.3.1.5 遇到機器人不斷旋轉的問題 265 14.3.2 實踐所有的機器人的功能 266 14.3.3 挑戰嘟嘟機器人 266 14.3.3.1 避免使用廁紙軌道 267 14.3.3.2 換成使用木塊作為軌道 267 14.3.3.3 環繞機器人 268 14.4 機器人被卡住

268 14.4.1 評估這種醉漢式的行進方式 269 14.4.2 評估嘟嘟機器人的行進方式 269 14.4.3 減小探測的模糊性 270 14.4.3.1 試著使用一個電阻—電容電路 270 14.4.3.2 試著使用一個遠光燈滯回 271 14.4.3.3 用一個多管腳的雄頭重新引導信號和控制端 274 14.4.3.4 簡單的想法用完了 275 第15章 如果我只有一個控制中樞 276 15.0 包括Atmel公司生產的ATiny84型微控制器,微控制器和邏輯晶片的對比,如何對微控制器進行程式設計,一個簡單的發光二極體的示例,七段發光二極體數碼管,輸入端(數位信號、類比信號、中斷

、重定、上拉電阻和下拉電阻)、輸出端(避免毛刺、高電流、脈衝寬度調製、串列通信)、單一紅外線探測器、記憶體、速度、時鐘、計時器、看門狗電路以及選擇微控制器的標準 276 15.1 考慮Atmel公司生產的ATtiny84型微控制器作為一個示例 277 15.2 對比微控制器和邏輯晶片 277 15.2.1 選擇邏輯晶片優於微控制器的情況 277 15.2.2 選擇微控制器優於邏輯晶片的情況 278 15.3 對微控制器進行程式設計 279 15.3.1 存儲程式 279 15.3.2 估計程式的存儲量 280 15.3.3 編寫程式 280 15.3.4 在沒有.NET的條件下工作 281 1

5.3.5 編譯器和下載程式 281 15.3.6 偵錯工具 282 15.3.6.1 點亮發光二極體 282 15.3.6.2 改變一個管腳 283 15.3.6.3 完成一次心跳 284 15.3.6.4 驅動一個顯示幕 285 15.4 探索常見的微控制器功能 286 15.4.1 微控制器的封裝 286 15.4.2 微控制器的管腳 287 15.4.2.1 輸入管腳 287 15.4.2.2 輸出管腳 289 15.4.3 微控制器的記憶體 293 15.4.3.1 非揮發性的記憶體 293 15.4.3.2 用外部的非揮發性記憶體進行補充 293 15.4.3.3 揮發性的記憶體

294 15.4.4 微控制器指令的尺寸 295 15.4.5 微控制器指令的複雜度 296 15.4.6 微控制器的速度 296 15.4.6.1 比較時鐘的速度 296 15.4.6.2 產生一個時鐘信號 297 15.4.6.3 把時鐘作為計時器來使用 298 15.4.7 特殊的看門狗 299 15.4.8 低電壓的看門狗 300 15.5 選擇微控制器 300 15.5.1 用完了 300 15.5.2 推薦Atmel公司生產的AVR8—bit微控制器 301 15.5.3 推薦Parallax公司生產的BASICStamp 302 15.5.4 問問周圍的人 303 15.6 你的

機器人製造好了 303 第16章 製造嘟嘟機器人的子板 304 16.0 包括連接兩個並行的電路板,使用機械管腳插口,選擇螺絲,重新加熱焊接點,攔截輸入端用來重新引導控制信號,軟體去反彈,使用雙列直插式開關,以及實現擴展介面 304 16.1 轉換成一個雙層的配置結構 305 16.1.1 連接到雙列直插式的插口上面 306 16.1.1.1 使用機械管腳的介面和頂座 307 16.1.1.2 把子板固定在主機板上面 308 16.1.1.3 焊接頂座 310 16.1.1.4 焊接新的雙列直插式介面 312 16.1.2 到達主機板有一定的困難 313 16.1.2.1 重新放置電源開關

314 16.1.2.2 冒險進行堆放介面的工作 314 16.1.2.3 遮擋紅外線反射性探測器 314 16.2 攔截信號:遇到了新的控制中樞 316 16.2.1 保留有價值的功能 316 16.2.2 重新跟蹤紅外線探測信號 316 16.2.3 捕捉並擾亂停止的狀態 317 16.2.4 重新跟蹤電動機和雙極型發光二極體的控制信號 318 16.2.5 產生(幾乎)完整的控制信號 318 16.3 擴展功能 318 16.3.1 檢查微控制器的管腳 318 16.3.2 為微控制器上電 319 16.3.3 探測牆壁和障礙物 319 16.3.4 控制電動機和雙色發光二極體 320

16.3.5 控制雙極型發光二極體 320 16.3.6 讀出按鈕的數值 320 16.3.6.1 解振盪一個輸入端 321 16.3.6.2 把按鈕添加到子板上面 322 16.3.7 提供雙列直插式開關的選擇 323 16.3.7.1 通過軟體解振盪 323 16.3.7.2 避免時斷時續的開關變化 324 16.3.8 製造音樂 325 16.3.9 剩下的管腳可以進行擴展 325 16.3.10 與其他的模組或者電腦進行通信 325 16.4 升級機器人 326 第17章 添加地面感測器的模組 327 17.0 包括光電阻、分壓器、光強計、TAOSTSL257型光線至電壓的放大光二極

體積體電路、半環形麵包板、擋板、沿路線行進的演算法、機器人相撲的建議 327 17.1 用光電阻感知亮度 327 17.1.1 把不同的電阻通過分壓器轉換成不同的電壓 328 17.1.1.1 為分壓器選擇一個電壓 329 17.1.1.2 為分壓器選擇一個電阻 330 17.1.1.3 保持在光電阻額定最大散熱功率以下 330 17.1.2 光電阻的回應是非線性的 331 17.1.2.1 畫出一個特定的光電阻的響應的圖像 332 17.1.2.2 計算靈敏度 332 17.1.2.3 在一個給定的光照條件下計算任何阻值 332 17.1.3 認識到不同的光電阻之間的不一致性 333 17.

1.3.0 測量不同 333 17.1.4 電阻上升和下降的速度 333 17.1.5 重新利用平衡式亮度傳感電路 335 17.2 用一個光二極體積體電路感知亮度 335 17.2.1 給出地面反射性電路 335 17.2.2 實現地面反射性電路 336 17.2.2.1 切割出一個半圓形的麵包板 337 17.2.2.2 遮擋電路板 337 17.2.2.3 安裝上一個黑色的邊緣 338 17.2.2.4 取出LEGO公司生產的積木的中心 339 17.2.2.5 調整並且測試地面反射性電路 340 17.2.2.6 在一個最大化反射表面調整到剛好低於5V 340 17.2.2.7 在一個

最小化反射性的表面進行測試 341 17.3 沿路線行進 341 17.3.1 路線亮度的自動探測 342 17.3.2 讀取地面感測器的數值 342 17.3.3 反轉感測器的數值 342 17.3.4 沿著暗色的路線行進 343 17.3.5 在暗色的路線上定位到中心 343 17.3.6 改進沿路線行進的演算法 344 17.4 在機器人的相撲比賽中競爭 344 17.4.1 在機器人相撲比賽中讓嘟嘟機器人就位 345 17.4.2 在雙列直插式開關的設置上採取策略 346 17.5 擴展可能性 346 第18章 呈上一頓機器人的大餐 347 18.0 包括LM386型音訊放大器,通過

脈衝寬度調製的音樂,嘟嘟機器人的升級片,角度電動機的安裝以及更多,平滑的輪子,彈簧管子晶須,杠杆開關和無線視頻 347 18.1 製造音樂 347 18.1.1 給出音訊電路 348 18.1.2 實現音訊電路 348 18.1.3 調整音量 348 18.1.3.1 監聽二進位的信號 349 18.1.3.2 增大音量 349 18.1.4 驅動一個揚聲器 350 18.1.4.1 選擇一個揚聲器 350 18.1.4.2 選擇一個音訊放大器的晶片,而不要選擇一個簡單的電晶體 350 18.1.5 看到聲音的波形 351 18.1.6 播放一個音符 351 18.1.7 播放一個音調 352

18.1.7.0 在機器人運動的時候同時播放樂曲 353 18.2 按比例增長 353 18.2.1 製造一個雙平臺 353 18.2.2 來回滑動 354 18.2.3 用家用的墊圈提供更大的頭部空間 355 18.2.4 輪子插口 355 18.2.5 支撐十字軸的兩端 356 18.3 安裝電動機 357 18.3.1 利用角度材料安裝電動機 357 18.3.1.1 購買鋁制角度材料 358 18.3.1.2 準備好合適的材料長度 358 18.3.1.3 用一個範本鑽出孔洞 359 18.3.1.4 故意留有迴旋餘地,具體方法是鑽出無螺紋的尺寸偏大的孔洞 359 18.3.2 用合

適角度的齒輪節省空間 360 18.3.2.1 凹痕和凹槽 360 18.3.2.2 插入輪子的輪軸 360 18.3.2.3 減小摩擦 361 18.3.2.4 把驅動鏈路放置在機器人的機身中 361 18.3.3 改裝一個直徑較小的電動機連接杆和集成安裝點,用來與LEGO公司生產的部件相容 362 18.3.3.1 調整齒輪電動機的連接杆 362 18.3.3.2 打磨連接杆 362 18.3.3.3 添加管子 363 18.3.3.4 用一個基於銷子的安裝點連接電動機 364 18.4 漫遊到太陽能機器人的領域 365 18.4.1 選擇可以平穩行駛的輪子 365 18.4.2 探測障礙

物 366 18.4.2.1 尋找光和感知陰影 367 18.4.2.2 用細須感測器試探性地向四周行進 367 18.4.2.3 使用彈簧管子 367 18.4.2.4 杠杆開關 368 18.5 從機器人的角度考慮一些問題 370 18.5.1 給任何一個現存的機器人添加一個無線的攝像機 370 18.5.2 用無線攝像機探索四周 371 18.5.3 你自己用無線攝像機進行探索 371 18.6 謝謝 371 附錄 互聯網上的參考資料 372