windows 10 home vs p的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列懶人包和總整理

windows 10 home vs p的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦Matevosyan, Naira R.寫的 Amazing Greenland 和Nordli, Douglas R., Jr.的 Pediatric EEG: An Interactive Reading Session都 可以從中找到所需的評價。

另外網站Hyper-V vs Virtual Machine Platform vs Windows ...也說明:Hyper-V (note that in latest Windows 10 version this has disappeared from the "Windows Features" checklist depicted bellow); it only shows in ...

這兩本書分別來自 和所出版 。

國立陽明交通大學 護理學系 陳怡如所指導 林敏玲的 發展社區老人跌倒風險自我篩檢工具 (2021),提出windows 10 home vs p關鍵因素是什麼,來自於跌倒、篩檢工具、社區老人。

而第二篇論文長庚大學 電子工程學系 賴朝松所指導 Mamina Sahoo的 基於石墨烯及生物碳基材料的可撓式電晶體應用與能量攫取 (2021),提出因為有 石墨烯、氟化石墨烯、太阳能电池、摩擦纳米发电机、生物碳、能量收集器的重點而找出了 windows 10 home vs p的解答。

最後網站Windows 10版本列表 - 維基百科則補充:Windows 10 作業系統若不計「N」版、「KN」版以及其他變種,有十二個版本(如計算伺服器和遊戲機的不自稱為Windows 10的版本,則為十六個),它們的功能集和面向的硬體 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了windows 10 home vs p,大家也想知道這些:

Amazing Greenland

為了解決windows 10 home vs p的問題,作者Matevosyan, Naira R. 這樣論述:

This book walks you through the world's largest non-continental island blanketed with ice two miles thick, a wonderland where glaciers meet the sea and icebergs chock the fields. For more than 4000 years the settlers have called this marginal land home. Join your tourmates Troy (the fennec fox),

and Tamias (the chipmunk), to explore the commuting tips and twenty reasons for visiting Greenland. Remarkable landscapes, exceptional wildlife, iceberg-choked fjords, falls, hot-springs, cool and fresh air, picture-postcard villages, and aurora luminescence - unique to the far north, are some of th

em. Feel adrenaline spark by taking a helicopter ride over the glaciers and formidable bergs between the towns, land on the snow-coated mountains to dog-sled or snow-mobile drive. Try kayaking, hiking, diving, and heli-skiing. Taste the impeccable Greenlandic cuisine rich in marine-mammal dishes, ex

traordinary seasoning, and the tastiest glacier ice-beer ever. Whether you crave a tranquil solitude or plucky escapade, this practical guide takes you to the heart of the Cold Haven. Welcome to the land of Vikings, Paleo-Eskimos, Inuits, and the brave Dutch // Visit other travel diaries from this

author: (1) Amalfi Coast, Italy; (2) Amazing Andorra; (3) Amazing Bavaria; (4) Amazing Berlin; (5) Amazing Bhutan; (6) Amazing Cave-Houses; (7) Amazing Domes; (8) Amazing Dublin; (9) Amazing Falkland Islands; (10) Amazing Finland: (11) Amazing Florence; (12) Amazing French Riviera; (13) Amazing Goz

o, Malta; (14) Amazing Iceland; (15) Amazing Innsbruck; (16) Amazing Jurmala, Latvia; (17) Amazing Monaco; (18) Amazing Naples; (19) Amazing Palau; (20) Amazing Paris; (21) Amazing Railways; (22) Amazing Salzburg; (23) Amazing Scotland; (24) Amazing Tree Houses; (25) Amazing Vatican; (26) Amazing Vi

enna; (27) Amazing Windows; (28) Amazing Wyoming; (29) Amazing Z rich; (30) Annecy, France; (31) Austin, Texas; (32) Banff, Alberta; (33) Bruges & Ghent, Belgium; (34) Cabo San Lucas; (35) Celle, Germany; (36) Christmas Island; (37) Cocos Keeling Islands; (38) Colmar, France; (39) Cork & Ken

mare, Ireland; (40) Easter Island, Chile; (41) Exquisite Bath, England; (42) Fifty Odd Loci in the United States; (43) Fiji; (44) Granada, Spain; (45) Interlaken, Unterseen, St Moritz: Switzerland; (46) Island Saint Helena, British Overseas; (47) Isle of Man; (48) Lafayette, Louisiana; (49) Las Poza

s, Xilitla, Mexico; (50) Lecco, Italy; (51) Lille, France; (52) Madeira, Portugal; (53) Montserrat, British West Indies; (54) Mulhouse, France; (55) Myrtle Beach, SC; (56) Nara, Japan; (57) Novo Mesto, Slovenia; (58) Obernai, France; (59) Odd & Outre Places of Washington, DC; (60) Palma de Mallo

rca, Spain; (61) Poznan, Poland; (62) Saint Lucia; (63) San Marino; (64) Santa Fe, NM; (65) Sardinia, Italy; (66) S lestat, France; (67) Seville, Spain: (68) Sint Maarten: Dutch & French Overseas; (69) Sintra, Portugal; (70) Socotra Island, Yemen; (71) South Georgia & Sandwich Islands, Brita

in; (72) St John's: Newfoundland-Labrador, Canada; (73) Strasbourg, France; (74) Svalbard, Norway; (75) The Faroe Islands; (76) The Rabbit Island; (77) The Trulli of Alberobello, Italy, (78) Tristan da Cunha; (79) Via Aurelia; (80) Via Claudia Augusta, (81) Via Domitia; (82) Via Fossa, England; and

(83) Wissembourg, France.

windows 10 home vs p進入發燒排行的影片

【Twitch】
https://www.twitch.tv/cr_rizart
↑僕のツイッチアカウントです!
フォロー&通知オンにしてください!
【所属】
Crazy Raccoon
Fortnite部門
https://www.crazyraccoon.co.jp/

メンバー(旧スポンサー)登録はこちらから!
https://goo.gl/QBnHvb

【Twitter】
https://twitter.com/RIZART_YT/

【オフィシャルショップ】
https://CrazyRaccoon.official.ec

【実績】
・ソロ34キル 世界1位
https://youtu.be/GPTKXOLM5lU

【Crazy Raccoon Team Sponsors】
【ゲーミングサプリ】
プロの為、そしてゲームを観る、Playする、愛する全ての人の為
http://crazyraccoon.sakura.ne.jp
ジェイテクト:
https://www.jtekt.co.jp/recruit/
世界シェアNo1のグローバルな会社様です!是非一度ご覧ください!!

Xlarge:
https://calif.cc/brand/xlarge/item/XLE0118F0036
僕とお揃いのTシャツや洋服があります!めっちゃカッコいい有名なストリートブランドです。

Level∞:
https://www.pc-koubou.jp/pc/game_crazy_raccoon.php
Crazy RaccoonコラボPC!フォートナイトをするのにオススメのPCです!

Heartim:
http://heartim.jp/
芸能人の来店もあるこちらの美容院でイベント出演時のカットやメイクを行って頂いています!

Xsplit:
https://www.xsplit.com/ja
Crazy Raccoonメンバー全員利用の配信ツール!「CrazyR」のコードで10%OFF!!

【提供PC】
LEVEL-R039-i7K-TOVI-CR [Windows 10 Home]
購入はこちらから ↓↓
https://www.pc-koubou.jp/products/detail.php?product_id=650926&p

”Music Provided by NoCopyrightSounds:
Robin Hustin x TobiMorrow - Light It Up (feat. Jex) [NCS Release]
https://www.youtube.com/watch?v=bdE_SyHad90
Kisma - Fingertips [NCS Release]
https://www.youtube.com/watch?v=LJeiQw2RmSg

發展社區老人跌倒風險自我篩檢工具

為了解決windows 10 home vs p的問題,作者林敏玲 這樣論述:

「跌倒」是一個公共衛生及臨床醫學重要的議題,是威脅老年人獨立自主的主要因素。而預防老人跌倒傷害的第一步是辨識有跌倒風險的個案,而選擇一個有效且可信的篩檢工具是很重要的。目前多數的篩檢評估工具,仍需由專業人員來操作執行,因此耗費很多成本,無法大量進行。因此本研究的目的旨在建立一個讓社區老人於日常生活中可以自我執行的跌倒風險篩檢工具,且此工具需具備良好的信度及效度,可以有效的辨識社區中具跌倒風險的老人,以便進一步進行跌倒評估及介入預防措施,達到跌倒預防的成效。研究是依據DeVellis(2003)所提出的工具發展的指導原則進行。分為二階段八個步驟進行,依據研究目的進行文獻搜尋選取實證等級I、II

、OR>3及CI

Pediatric EEG: An Interactive Reading Session

為了解決windows 10 home vs p的問題,作者Nordli, Douglas R., Jr. 這樣論述:

"Available in both DVD and downloadable software formats, Pediatric EEG is the first fully interactive tool to simulate an actual pediatric EEG lab reading session. Pediatric EEG: An Interactive Reading Session teaches pediatric EEG interpretation to neurology residents, clinical neurophysiology

fellows, neurologists, and neurodiagnostic technologists using 100 EEG cases, over 150 high-quality EEGs, and a scored self-testing module with case-based questions, answers, and explanations to help users assess reading skills. A wide variety of examples are presented to illustrate the most importa

nt aspects of pediatric EEG, including ontogeny of waveforms, key features of all pediatric epilepsy syndromes, various seizure types, common abnormalities, metabolic syndromes, altered mental status, infantile spasms, and more. Teaching points in the cases are emphasized throughout, making this the

perfect tool for clinical self-assessment and board preparation. Features Unique to this Program IncludeInteractivity: An easy-to-use interface with on-screen "hotspots" allowing the user to identify abnormalities and key EEG features with the author's expert guidance Comprehensive Coverage: 100 ca

ses provide an in-depth review of EEG interpretation in pediatric neurology Versatility: Users can view cases randomly to simulate an EEG lab session or by topic (selecting for age, syndrome, or seizure type), or use the keyword index to home in on more specific case criteriaSelf-assessment: Quiz wi

th scoring to measure interpretive skill acquisitionAudio Commentary: Amplifies and enhances the visual and text presentationThis activity has been approved for 8.0 AMA PRA Category 1 Credits√ Pediatric EEG: An Interactive Reading Session is the only publication that simulates real-life laboratory c

onditions, while providing questions, answers and expert analysis and discussion of a broad range of cases, to help users gain proficiency in the art of EEG diagnosis and interpretation.The American Clinical Neurophysiology Society designates this enduring material for a maximum of 8.0 AMA PRA Categ

ory 1 Credit(s)√ . Physicians should claim only the credit commensurate with the extent of their participation in the activity.Available for both Windows and MacintoshNOTICEThe DVD edition of this program cannot be returned if the shrink-wrap packaging is opened. Defective items may be exchanged wit

hin 30 days of purchase. Please check the system requirements below to determine if this program (in either DVD or downloadable software formats) will work on your computer.System RequirementsHardware Minimum SpecificationsProcessor: 500 MHz Pentium III or EquivalentOperating System: Windows 98, 200

0, XP, NT, Macintosh OS 10Memory:256 MB RAM (512 MB recommended)Speakers: Multimedia speakers or headphonesWeb Browser PC: Microsoft Internet Explorer 6 or higher and Mozilla Firefox 3+Web Browser MAC: Apple Safari 3+ Plug-in: Macromedia Flash 8 and aboveInternet Access: 128 Kbps Internet connection

or higherScreen Resolution: 1024 X 768"

基於石墨烯及生物碳基材料的可撓式電晶體應用與能量攫取

為了解決windows 10 home vs p的問題,作者Mamina Sahoo 這樣論述:

Table of ContentsAbstract.......................................................................................................iFigure Captions........................................................................................xiTable Captions...................................................

....................................xxiChapter 1: Introduction1.1 Flexible electronics................................................................................11.2 Graphene the magical material ………………………….……….......21.2.1 Synthesis of graphene…………………………….….…...21.2.1.1 Mechanical exfoliati

on of graphene………………...……21.2.1.2 Epitaxial growth on Sic substrate………………….…..31.2.1.3 Chemical vapor deposition (CVD) method………….…..41.2.2 Graphene transfer…………………………………………....41.3 Application of graphene based Electronics……………………….......51.3.1 Graphene based flexible transparent electrode

……………….61.3.2 Top gated Graphene field effect transistor…………………….71.4 Challenges of flexible graphene based field effect transistors.……….91.5 Energy harvesting devices for flexible electronics………….........….91.6 Solar cell…………………………………………………………...101.6.1 Device architecture…………………………………………101.

6.2 Issues and Challenges of Perovskite solar cells………...121.7 Triboelectric nanogenerator (TENG)………………………………121.7.1 Working mode of TENG………………………………….141.8 Applications of TENG………………………………………………151.8.1 Applications of graphene based TENG…………………....151.8.2 Applications of bio-waste material ba

sed TENG………….171.9 Key challenges of triboelectric nanogenerator…………………....…191.10 Objective and scope of this study………………………………....19Chapter 2: Flexible graphene field effect transistor with fluorinated graphene as gate dielectric2.1 Introduction………………………………………………………....212.2 Material preparation a

nd Device fabrication………………. 232.2.1CVD Growth of Graphene on Copper Foil………………….232.2.2 Transfer of graphene over PET substrate……………...........252.2.3 Fabrication of fluorinated graphene ……………...........252.2.4 F-GFETs with FG as gate dielectric device fabrication……262.2.5 Material and electrical C

haracterization …………………272.3 Results and discussion…………………………………………….282.3.1 Material characterization of PG and FG……………...…...….282.3.2 Electrical characterization of F-GFET with FG as dielectrics..332.3.3 Mechanical stability test of F-GFET with FG as dielectrics ….362.4 Summary…………………………………………………

………....40Chapter 3: Robust sandwiched fluorinated graphene for highly reliable flexible electronics3.1 Introduction………………………………………………………….423.2 Material preparation and Device fabrication ………………….........443.2.1 CVD Growth of Graphene on Copper Foil…………………...443.2.2 Graphene fluorination …...…….…………

…………..............443.2.3 F-GFETs with sandwiched FG device fabrication....................443.2.4 Material and electrical Characterization…..............................453.3 Results and discussion ……………………………………...............453.3.1 Material characterization of sandwiched…………………….453.3.2 Electric

al characterization of F-GFET with sandwiched FG....473.3.3 Mechanical stability test of F-GFET with sandwiched FG…503.3.4 Strain transfer mechanism of sandwiched FG………………513.4 Summary…………………………………………………………....53Chapter 4: Functionalized fluorinated graphene as a novel hole transporting layer for ef

ficient inverted perovskite solar cells4.1 Introduction………………………………………………………….544.2 Material preparation and Device fabrication......................................564.2.1 Materials ………………………...…………………………564.2.2 CVD-Graphene growth ……………………………...…...564.2.3 Graphene fluorination …………………………………….564.

2.4 Transfer of fluorinated graphene…………………………...574.2.5 Device fabrication …………………………………….….574.2.6 Material and electrical Characterization …….....................584.3 Results and discussion …………………………………………….594.3.1 Surface electronic and optical properties of FGr……….….594.3.2 Characterization o

f FGr and perovskite surface ……….…644.3.3 Electrical performance of PSC………………….…….…...694.3.4 Electrical performance of Flexible PSC……………………724.4 Summary…………………………………………………………...78Chapter 5: Flexible layered-graphene charge modulation for highly stable triboelectric nanogenerator5.1 Introduction…………

…………………………………………....795.2 Experimental Section……………………………………………….825.2.1 Large-area graphene growth ……………………………….825.2.2 Fabrication of Al2O3 as the CTL …………………………...825.2.3 Fabrication of a Gr-TENG with Al2O3 as the CTL………825.2.4 Material characterization and electrical measurements…….835.3 Results

and discussion.…………………………………...…………845.3.1 Material Characterization of Graphene Layers/Al2O3……845.3.2 Working Mechanism of Gr-TENG with Al2O3 as CTL…915.3.3 Electrical Characterization of Gr-TENG with Al2O3 CTL…945.3.4 Applications of the Gr-TENG with Al2O3 as CTL……….1015.4 Summary…………………………………………

……………….103Chapter 6: Eco-friendly Spent coffee ground bio-TENG for high performance flexible energy harvester6.1 Introduction…………………………………………………….......1046.2 Experimental Section…………………………………………….1086.2.1 Material Preparation …………………………………….1086.2.2 Fabrication of SCG powder based TENG………………...1086

.2.3 Fabrication of SCG thin-film based TENG ………………1096.2.4 Material characterization and electrical measurements….1106.3 Results and discussion.…………………………………...………1116.3.1 Material Characterization of SCG powder and thin film….1116.3.2 Working Mechanism of SCG-TENG……………………...1186.3.3 Electrical Cha

racterization of SCG-TENG……………….1226.3.4 Applications of the SCG thin-film based TENG………….1326.4 Summary………………………………………………………….134Chapter 7: Conclusions and future perspectives7.1 Conclusion………………………………………………………....1357.2 Future work …………………………….………………………….1377.2.1 Overview of flexible fluorinated g

raphene TENG..............1377.2.1.1 Initial results………………………………….…1387.2.2.1.1 Fabrication of FG-TENG………………1387.2.2.1.2 Working principle of FG-TENG……….1397.2.2.1.3 Electrical output of FG-TENG.………...140References…………………………………………………………….142Appendix A: List of publications………………….……………..........177A

ppendix B: Fabrication process of GFETs with fluorinated graphene (FG) as gate dielectric……........……………………………………….179Appendix C: Fabrication process of GFETs with sandwiched FG…....180Appendix D: Fabrication process of inverted perovskite solar cell with FGr as HTL…………………………………………………………….181Appendi

x E: Fabrication of a Gr-TENG with Al2O3 as the CTL…….182Appendix F: Fabrication of SCG based triboelectric nanogenerator….183Figure captionsFigure 1-1 Exfoliated graphene on SiO2/Si wafer……………………….3Figure 1-2 Epitaxial graphene growth on SiC substrate………………....3Figure 1-3 Growth mechanism of graphe

ne on Cu foil by CVD ……......4Figure 1-4 Wet transfer process of CVD grown graphene…………...….5Figure 1-5 RGO/PET based electrodes as a flexible touch screen.……....6Figure 1-6 Graphene based (a) touch panel (b) touch-screen phone…….7Figure 1-7 Flexible graphene transistors (a) (Top) Optical photograph

of an array of flexible, self-aligned GFETs on PET. (Bottom) The corresponding schematic shows a device layout. (b) Schematic cross-sectional and top views of top-gated graphene flake–based gigahertz transistors. (Left) AFM image of a graphene flake. (Right) Photograph of flexible graphene devices

fabricated on a PI substrate. (c) Cross-sectional schematic of flexible GFETs fabricated using a self-aligned process……8Figure 1-8 The magnitude of power needed for meet certain operation depending critically on the scale and applications………………………10Figure 1-9 Schematic diagrams of PSC in the (a) n-i

-p mesoscopic, (b) n-i-p planar, (c) p-i-n planar, and (d) p-i-n mesoscopic structures………...12Figure 1-10 Schematic illustration of the first TENG...………………...13Figure 1-11 Working modes of the TENG. (a) The vertical contact-separation mode. (b) The lateral sliding mode. (c) The single-electrode mode

. (d) The free-standing mode ………………………………...……14Figure 1-12 Schematic illustration of (a) device fabrication of graphene-based TENGs (b) graphene/EVA/PET-based triboelectric nanogenerators (c) device fabrication of stretchable CG based TENG with electrical output performance……………………………………………………...17

Figure 1-13 Schematic illustration and output performance of bio-waste material based TENG (a) Rice-husk (b) Tea leaves (c) Sun flower powder (SFP) (d) Wheat stalk based TENG………….…………………………18Figure 2-1 Graphene synthesis by LPCVD method……….…………...24Figure 2-2 Schematic diagram of (a) preparation pro

cess of 1L-FG/copper foil (b) Layer by layer assembly method was used for fabricating three-layer graphene over copper foil and then CF4 plasma treatment from top side to form 3L-FG/copper foil…………………….26Figure 2-3 Schematic illustration of fabrication process of F-GFET with FG as gate dielectric ……

……………………………………………….27Figure 2-4 (a) Raman spectra of PG, 1L-FG and 3L-FG after 30 min of CF4 plasma treatment over copper foil. (b) Peak intensities ratio ID/IG and optical transmittance of PG, 1L-FG and 3L-FG. Inset: image of PG and 1L-FG film over PET substrate. (c) Typical Raman spectra of PG, 1L

-FG and 3L-FG on PET substrate. (d) Optical transmittance of PG, 1L-FG and 3L-FG film over PET substrate. The inset shows the optical image of GFETs with FG as gate dielectrics on PET ……….…………30Figure 2-5 XPS analysis result of (a) PG (b) 1L-FG (c) 3L-FG where the C1s core level and several carbon f

luorine components are labeled. The inset shows the fluorine peak (F 1s) at 688.5 eV……………………….32Figure 2-6 (a) Water contact angle of PG, 1L-FG and 3L-FG over PET substrate. (b) The relationship between water contact angle of PG, 1L-FG and 3L-FG and surface-roughness………………………………………33Figure 2-7 (a) I

d vs. Vd of w/o-FG, w/1L-FG and w/3L-FG samples after 30 min of CF4 plasma (b) Id vs. Vg of w/o-FG, w/1L-FG and w/3L-FG samples at a fixed value of drain to source voltage, Vds of 0.5 V (c) Gate capacitance of w/o-FG, w/1L-FG and w/3L-FG samples (d) Gate leakage current of w/o-FG (naturally formed A

l2OX as gate dielectric), w/1L-FG and w/3L-FG samples ……………………………...…………...……...34Figure 2-8 (a) Schematic illustration of bending measurement setup at different bending radius. (i) Device measurement at (i) flat condition (ii) bending radius of 10 mm (iii) 8 mm (iv) 6 mm. Inset shows the photograph

of measurement setup. Change in (b) carrier mobility (c) ION of w/o-FG, w/1L-FG and w/3L-FG samples as a function of bending radius. The symbol ∞ represents the flat condition. Change in (d) carrier mobility (e) ION of w/o-FG, w/1L-FG and w/3L-FG samples as a function of bending cycles (Strain = 1.

56%)…………………………………….38Figure 3-1 Schematic illustration of the flexible top gate graphene field effect transistor with sandwich fluorinated graphene (FG as gate dielectric and substrate passivation layer) ……………………………...…………44Figure 3-2 Raman spectra of (a) PG/PET and PG/FG/PET substrate (b) sandwiche

d FG (FG/PG/FG/PET). Inset showing the optical transmittance of sandwiched FG. (c) HRTEM image for 1L-FG.……………….….…46Figure 3-3 (a) Id vs. Vd of FG/PG/FG device at variable vg (−2 to 2 V). (b) Id vs. Vg of FG/PG/FG. (c) Gate capacitance of FG/PG/FG ….…….48Figure 3-4 Raman spectra of devices under be

nding (a) PG/PET (Inset shows the 2D peak) (b) PG/FG/PET (inset shows the 2D peak) …….…49Figure 3-5 (a) Change in Mobility (b) change in ION of PG/PET and PG/FG/PET as a function of bending radius between bending radii of ∞ to 1.6 mm in tensile mode (c) Change in Mobility (d) Change in ION of PG/PET

and PG/FG/PET as a function of bending cycles. Inset of (c) shows the photograph of F-GFETs with sandwich FG on the PET substrate (e) change in resistance of w/1L-FG, 1L-FG/PG/1L-FG samples as a function of bending radius ………………………...……………….50Figure 3-6 Schematic evolution of proposed strain transf

er mechanism through PG/PET and PG/FG/PET. The inset of PG/PET sample shows the generation of sliding charge due to interfacial sliding between PG and PET ………………………………………………………………….….52Figure 4-1 FGr fabrication and transfer process …………….………....57Figure 4-2 (a) Raman analysis of pristine graphene a

nd the FGr samples after 5, 10, 20, and 30 min of CF4 plasma treatment over Cu foil (b) Raman intensity ratios (I2D/IG and ID/IG) of fluorinated graphene, with respect to the exposure time ……………………………………………60Figure 4-3 SEM images of (a) ITO, (b) ITO/1L-FGr, (c) ITO/2L-FGr, and (d) ITO/3L-FGr …………………

………………………………….61Figure 4-4 XPS analysis of FGr with (a) 5 min (b) 10 min and (c) 20 min of CF4 plasma treatment on the Cu foil (d) The fluorine peak (F1s) of FGr (f) The correlation of the carbon-to-fluorine fraction (C/F) with exposure time and the corresponding carrier concentrations …………….………62Fi

gure 4-5 Tauc plots and UV–Vis absorption spectra of FGr films with CF4 plasma treatment for (a) 5, (b) 10, and (c) 20 min ….………......….63Figure 4-6 WCAs on PEDOT: PSS and 1L, 2L, and 3L FGr samples ...64Figure 4-7 (a) Mechanism of large grain growth of perovskite on a non-wetting surface (b) Top-vi

ew and cross-sectional surface morphologies of perovskites on various HTLs ………………………………...…………65Figure 4-8 XRD of perovskite films on various HTL substrates ….…...66Figure 4-9 UPS spectra of various numbers of FGr layers on ITO: (a) cut-off and (b) valance band spectra …………………………………….….67Figure 4-10

Energy band diagrams of PSCs with (a) PEDOT: PSS, (b) 1L-FGr, (c) 2L-FGr, and (d) 3L-FGr as HTL …………………….…….68Figure 4-11 (a) Steady state PL spectra of PEDOT: PSS/perovskite and FGr/perovskite films. (b) TRPL spectral decay of PEDOT: PSS/perovskite and FGr/perovskite films………………………….……69Figure 4-1

2 (a) Schematic representation of a PSC having an inverted device configuration. (b) Cross-sectional HRTEM image of the ITO/ FGr–perovskite interface………………………………………...………70Figure 4-13 Photovoltaic parameters of PSCs incorporating various HTL substrates: (a) PCE (%), (b) Voc (V), (c) Jsc (mA/cm2), an

d (d) FF (%)....71Figure 4-14 Normalized PCEs of target and control PSCs incorporating various HTL substrates, measured in a N2-filled glove box. (a) Thermal stability at 60 °C (b) Light soaking effect under 1 Sun (c) Stability after several days …………………………………………………………….72Figure 4-15 (a) Schematic r

epresentation of the structure of a flexible PSC on a PET substrate (b) J–V curves of control and target flexible PSCs, measured under both forward and reverse biases. (c) Average PCE of flexible PSCs incorporating PEDOT: PSS and FGr HTLs……….…73Figure 4-16 (a) Normalized averaged PCEs of the flexibl

e PSCs after bending for 10 cycles at various bending radii. (b) Normalized averaged PCEs of the flexible PSCs plotted with respect to the number of bending cycles at a radius of 6 mm ………………………………………………75Figure 4-17 Photovoltaics parameters of flexible PSCs with various HTL substrates: (a) JSC (mA/c

m2), (b) Voc (V), and (c) FF (%) ……………....75Figure 4-18 XRD patterns of perovskite films on PET/ITO/FGr, recorded before and after bending 500 times …………………………………….76Figure 4-19 SEM images of (a) perovskite films/FGr/ITO/PET before bending (b) after bending 500 times (c) perovskite films/PEDOT: PSS/

ITO/PET before bending (d) after bending 500 times ……………….…77Figure 4-20 PL spectra of perovskite films on PET/ITO/FGr, recorded before and after various bending cycles …………………………….…78Figure 5-1 Schematic illustration showing the fabrication process of a flexible Gr-TENG with Al2O3 as the CTL ……………

………………...83Figure 5-2 The Raman spectra of (a) graphene/Al-foil/PET and (b) graphene/Al2O3/Al-foil/PET. The I2D/IG of graphene layers (1L, 3L and 5L) over (c) Al-foil/PET substrate (d) Al2O3/Al-foil/PET substrate …...85Figure 5-3 XRD patterns of (a) graphene/Al-foil/PET and (b) graphene/Al2O3/Al-foi

l/PET ……………………………………………86Figure 5-4 FESEM image of the graphene surface on (a) Al-foil/PET and (b) Al2O3/Al-foil/PET. EDS analysis of (c) graphene/Al-foil/PET and (d) graphene/Al2O3/Al-foil/PET (e) EDS elemental mapping of the graphene/Al2O3/Al-foil/PET presenting C K series, O K series and Al K ser

ies …………………………………………………………….………87Figure 5-5 3D AFM images of (a) 1L-Gr (b) 3L-Gr (c) 5L-Gr on Al foil (d) 1L-Gr (e) 3L-Gr (f) 5L-Gr on Al2O3/Al foil………………….….….89Figure 5-6 Work function of graphene layers on the (a) Al-foil (b) Al2O3/Al-foil substrate by KPFM. Inset showing the surface potential of

graphene layers (1L, 3L and 5L) over Al-foil and Al2O3 substrate (c) energy band diagrams for 1L-Gr, 3L-Gr and 5L-Gr over Al2O3 ……....90Figure 5-7 Schematic illustration of Electronic energy levels of graphene samples and AFM tip without and with electrical contact for three cases: (i) tip and the

1L-Gr (ii) tip and the 3L-Gr and (iii) tip and the 5L-Gr over Al2O3/Al foil/PET……………………………………….…...…………91Figure 5-8 Working mechanism of Gr-TENG with Al2O3 ….….…...…93Figure 5-9 a) ISC and (b) VOC of 1L-, 3L- and 5L-Gr-TENGs without Al2O3 CTL (c) Sheet resistance of graphene as a function of number

of layers ………………………………...…...…………………………….95Figure 5-10 Electrical output of the Gr-TENG with Al2O3 CTL: (a) ISC and (b) VOC of 1L-, 3L- and 5L-Gr. Magnification of the (c) ISC and (d) VOC of the 3L-Gr-TENG with Al2O3 as the CTL. Average mean (e) ISC and (f) VOC generated by pristine Gr-TENGs (1L, 3L

and 5L) and Gr-TENGs (1L, 3L and 5L) with Al2O3 CTL. Error bars indicate standard deviations for 4 sets of data points ……………...…………….….…......96Figure 5-11 (a) CV of Al/Al2O3/3L-Gr/Al at 100 kHz and 1 MHz (b) CV hysteresis of 3L-Gr-TENG with Al2O3 as CTL with different sweeping voltages (c) Surface

charge density of graphene (1L, 3L and 5L)-based TENG with and without Al2O3 as CTL ………………………………...98Figure 5-12 Circuit diagram of output (a) VOC and (b) ISC measurement of 3L-Gr TENG with Al2O3 CTL as a function of different resistors as external loads. Variation in VOC and ISC w.r.t different re

sistors as external loads of (c) 3L-Gr TENG with Al2O3 CTL (d) 3L-Gr TENG without Al2O3 CTL. Relationship between electrical output power and external loading resistance (e) 3L-Gr TENG with Al2O3 CTL (f) 3L-Gr TENG without Al2O3 CTL…………………………………….………………...99Figure 5-13 (a)Electrical stability and du

rability of the 3L-Gr TENG with Al2O3 (b) Schematic illustrations showing the charge-trapping mechanism of 3L-Gr-TENG without and with Al2O3 charge trapping layer ………101Figure 5-14 (a) Photograph showing 20 LEDs being powered (b) Circuit diagram of bridge rectifier (c) Charging curves of capacitors

with various capacitances (d) Photograph of powering a timer …….………………102Figure 6-1 The schematic diagram of the fabrication process for SCG powder based TENG ……………………………………………….….108Figure 6-2 The schematic diagram of the fabrication process for SCG thin-film based TENG via thermal evaporation meth

od ………………109Figure 6-3 FESEM image of (a) SCG powder (inset image illustrates the high magnification of SCG powder) (b) SCG thin-film/Al foil/PET (inset image illustrates the high magnification of SCG thin-film). EDS of the (c) SCG powder (d) SCG thin-film/Al foil/PET…………………………. 112Figure 6-4 Raman

spectra analysis (a) pristine SCG powder (b) SCG thin-film/Al foil/PET. XRD patterns of (c) SCG powder (d) SCG thin film with different thickness ……………………………………… ……….115Figure 6-5 FTIR analysis of the (a) pristine SCG powder sample (b) SCG thin film………………………………………………………………...116Figure 6-6 3D AFM ima

ge of SCG thin-film with various thickness (a) 50 nm (b)100 nm and (c) 200 nm……………………………………...117Figure 6-7 Schematic illustration of working principle of SCG thin-film based TENG …………………………………………………………...119Figure 6-8 Finite element simulation of the generated voltage difference for SCG thin-film b

ased TENG based on the contact and separation between SCG thin film and PTFE …………….……………………….120Figure 6-9 (a) The setup for electrical property testing, which including a Keithley 6514 system electrometer and linear motor. Electrical output (b) ISC (c) VOC of TENGs based on different friction pairs

for checking the triboelectric polarity of SCG…………………………………………...123Figure 6-10 Electrical measurement of (a) ISC and (b) VOC of the SCG thin-film based TENG. Mean value of (d) ISC (e) VOC and (f) Output power density of the pristine SCG powder and thermal deposited SCG thin-film based TENG. ...………

………………………………………125Figure 6-11 (a) Schematic illustration of KPFM for measuring the work function. (b) Surface potential images of SCG thin film with various thickness (50 nm, 100 nm and 200 nm). (c) Surface potential and (d) Work function vs SCG thin film with various thickness (50 nm, 100 nm and 20

0 nm).………….……………………………………………….128Figure 6-12 (a) Isc and (b) Voc of SCG thin film based TENG under different contact frequencies (c) Isc and (d) Voc of SCG thin film based TENG under different separation distance…………………………….129Figure 6-13 Electrical response (a) ISC (b) VOC of pristine SCG powder an

d (c) ISC (d) VOC of SCG thin-film based TENG with respect to different relative humidity (35-85% RH) …………………………….131Figure 6-14 Electrical stability and durability test of the output performance of (a) pristine SCG powder based TENG (b) SCG thin-film based TENG……………………………………………………………132Figure 6-15

Applications of the SCG thin film based TENG as a power supply: (a) Circuit diagram of the bridge-rectifier for charging a capacitor (b) Charging curves of capacitors with various capacitances (0.1, 2.2 and 3.3 µF) (c) Photograph of powering a timer…………………...………133Figure 7-1 Schematic illustration o

f FG based TENG…….….……….139Figure 7-2 Working mechanism of FG based TENG…………………140Figure 7-3 Electrical output of FG-TENG: (a) Isc and (b) Voc …….….141Table captionsTable 2-1 Comparison of flexible G-FETs on/off ratio of our work with other’s work…………………………………………………...………...40Table 3-1 Summary of th

e electrical and mechanical performance of flexible w/o-FG, w/ 1L-FG, w/3L-FG and sandwich FG (FG/PG/FG) samples......................................................................................................52Table 3.2: Comparison of the electrical and mechanical performance of sandwich FG ba

sed F-GFET with previous F-GFET with different gate dielectrics……………………………………………………….………53Table 4-1 Best photovoltaic performance from control and target devices prepared on rigid and flexible substrates……………………………......74Table 5-1 EDS elemental analysis of graphene over Al-foil/PET and Al2O3/Al-foi

l/PET ………………………………………………………88Table 5-2 Comparison of electrical output performance of Gr-TENGs with and without Al2O3 CTL samples used in this study………………103Table 6-1 EDS elemental analysis of SCG-Powder and SCG thin film /Al foil/PET………………………………………………………………...113Table 6-2 Comparison of electrical o

utput performance of SCG-TENGs samples used in this study……………………………………………...126